Skip to main content

Advertisement

Log in

Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial

  • Original Research Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2017

This article has been updated

Abstract

Background

The licensed anesthetic xenon, which exerts organ protective properties, was recently added by the World Anti-Doping Agency to the list of prohibited substances. Xenon is supposed to trigger the production of hypoxia-inducible factor 1α (HIF-1α) and subsequently erythropoietin, but data are limited to in vivo experimental work. Therefore we evaluated the effect of xenon on erythropoietin levels in healthy persons.

Methods

Twenty-four healthy volunteers were randomly assigned either to a group spontaneously breathing xenon 30 % (Xe/O2 30 %/60 %) or a group breathing control gas (N2/O2 40 %/60 %) for 45 min. Primary outcome parameters were erythropoietin levels at several time-points after exposure. Secondary outcome parameters were serum levels of testosterone, cytokines, and growth factors as well as concentrations of xenon in blood and exhalation samples measured at several time-points after exposure. In addition, hemodynamic safety parameters were monitored during exposure.

Results

The administration of xenon significantly increased erythropoietin levels 8 h after exposure (1.34 [±0.368]; p = 0.008), peaking at 24 h compared to the baseline values (1.45 [±0.498]; p = 0.01) and remained traceable in blood and exhalation probes until 24 h after exposure. In contrast, no significant change was observed in the control group. Measurement of stromal cell-derived factor 1 (SDF-1) revealed a significant increase of SDF-1 levels (p = 0.005), whereas no differences were observed with respect to growth factors, cytokines, or androgens. In an in vitro chemotaxis assay, endothelial progenitor cells (EPCs) showed a trend towards increased migration in serum samples received from participants after xenon exposure (p = 0.080).

Conclusion

The present study presents first evidence about a xenon-induced effect on increased erythropoietin levels in healthy volunteers.

The study was registered at the European Medicines Agency (EudraCT-number: 2014-000973-38) and at ClinicalTrials.gov (NCT number: 02129400).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 17 November 2017

    Page 1764, Column 2, `Acknowledgements’ section: The first sentence, which previously read:

References

  1. Breath it in. Economist 2014: Feb 8th. http://www.economist.com/news/science-and-technology/21595890-obscure-gasimproves-athletes-performance-breathe-it. Accessed 12 May 2015.

  2. Koh B, Neef M. Xenon gas as a performance-enhancing drug: doping or just hot air? CyclingTips 2014. http://cyclingtips.com.au/2014/03/xenon-gas-as-a-performance-enhancing-drug-doping-or-just-hot-air/. Accessed 12 May 2015.

  3. Seppelt H. Geheimsache Doping—Wie Russland seine Sieger macht, ARD. 2014: Dec 3rd. http://www.ardmediathek.de/tv/Sportschau/Geheimsache-Doping/Das-Erste/Video?documentId=25114280&bcastId=53524. Accessed 13 May 2015.

  4. Pound W, McLaren RH, Younger G, Robertson J, et al. The Independent Commission Report #1. 9th November 2015.

  5. Bukhtiyarov IV, Kalmanov AS, Kislyakov UU, Nikiforov DA, Chistov SD, Shvetskiy FM, Bubeyev UA. Studying of xenon adaptility within training process for functional state correction in sportsmen. НАУЧНО&ПРАКТИЧЕСКИЙ ЖУРНАЛ. 2010;6 (78):22.

    Google Scholar 

  6. Kalmanov AS, Yu A, Bubeev, Kotrovskaya TI. Course application effect of oxygen-xenon gas mixture inhalation on functional status of mountaineers. НАУЧНО&ПРАКТИЧЕСКИЙ ЖУРНАЛ. 2011;3(87):28.

  7. Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA. 2005;293:90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chong ZZ, Kang J-Q, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation. 2002;106:2973–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gao D, Ning N, Niu X, Dang Y, Dong X, Wei J, Zhu C. Erythropoietin treatment in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Am Heart J. 2012;164(715–727):e1.

    Google Scholar 

  10. Derwall M, Coburn M, Rex S, Hein M, Rossaint R, Fries M. Xenon: recent developments and future perspectives. Minerva Anestesiol. 2009;75:37–45.

    CAS  PubMed  Google Scholar 

  11. Stoppe C, Fahlenkamp AV, Rex S, Veeck NC, Gozdowsky SC, Schälte G, Autschbach R, Rossaint R, Coburn M. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth. 2013;111:406–16.

    Article  CAS  PubMed  Google Scholar 

  12. Ma D, Lim T, Xu J, Tang H, Wan Y, Zhao H, Hossain M, Maxwell PH, Maze M. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol. 2009;20:713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka, et al. General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain. Plos One. 2011; 6(12):e29378.

  14. Baugh JA, Gantier M, Li L, Byrne A, Buckley A, Donnelly SC. Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochem Biophys Res Commun. 2006;347:895–903.

    Article  CAS  PubMed  Google Scholar 

  15. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    Article  CAS  PubMed  Google Scholar 

  16. Stoppe C, Rimek A, Rossaint R, Rex S, Stevanovic A, Schälte G, Fahlenkamp A, Czaplik M, Bruells CS, Daviet C, Coburn M. Xenon consumption during general surgery: a retrospective observational study. Med Gas Res. 2013;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stoppe C, Fries M, Rossaint R, Grieb G, Coburn M, Simons D, Brücken D, Bernhagen J, Pallua N, Rex S. Blood levels of macrophage migration inhibitory factor after successful resuscitation from cardiac arrest. PLoS One. 2012;7:e33512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolb B, Ettre LS. Theory and practice of multiple headspace extraction. Chromatographia. 1991;32(11–12):505–13.

    Article  CAS  Google Scholar 

  19. Coburn M, Kunitz O, Apfel CC, Hein M, Fries M, Rossaint R. Incidence of postoperative nausea and emetic episodes after xenon anaesthesia compared with propofol-based anaesthesia. Br J Anaesth. 2008;100:787–91.

    Article  CAS  PubMed  Google Scholar 

  20. Coburn M, Kunitz O, Baumert J-H, Hecker K, Haaf S, Zühlsdorff A, Beeker T, Rossaint R. Randomized controlled trial of the haemodynamic and recovery effects of xenon or propofol anaesthesia. Br J Anaesth. 2005;94:198–202.

    Article  CAS  PubMed  Google Scholar 

  21. Rishpon-Meyerstein N, Kilbridge T, Simone J, Fried W. The effect of testosterone on erythropoietin levels in anemic patients. Blood. 1968;31:453–60.

    CAS  PubMed  Google Scholar 

  22. Axelsson J, Ingre M, Akerstedt T, Holmbäck U. Effects of acutely displaced sleep on testosterone. J Clin Endocrinol Metab. 2005;90:4530–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bromage DI, Davidson SM, Yellon DM. Stromal derived factor 1α: a chemokine that delivers a two-pronged defence of the myocardium. Pharmacol Ther. 2014;143:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM, Yellon DM. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res Cardiol. 2013;108:377.

    Article  PubMed  Google Scholar 

  25. Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in vivo and in vitro models for the regulation of cardiac development. Int J Cardiol. 2015;183C:117–28.

    Article  Google Scholar 

  26. Papaloucas M, Kyriazi K, Kouloulias V. Pheromones: a new ergogenic aid in sport? Int J Sports Physiol Perform. 2015;. doi:10.1123/ijspp.2014-0226.

    PubMed  Google Scholar 

  27. Déry M-AC, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37:535–40.

    Article  PubMed  Google Scholar 

  28. Fahlenkamp AV, Coburn M, Haase H, Kipp M, Ryang Y-M, Rossaint R, Beyer C. Xenon enhances LPS-induced IL-1β expression in microglia via the extracellular signal-regulated kinase 1/2 pathway. J Mol Neurosci. 2011;45:48–59.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Oh CK, Messadi DV, Duong HS, Kelly AP, Soo C, Wang L, Le AD. Hypoxia-induced HIF-1 alpha accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res. 2006;312:145–55.

    Article  CAS  PubMed  Google Scholar 

  30. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoppe C, Coburn M, Fahlenkamp A, Ney J, Kraemer S, Rossaint R, Goetzenich A. Elevated serum concentrations of erythropoietin after xenon anaesthesia in cardiac surgery: secondary analysis of a randomized controlled trial. Br J Anaesth. 2015;114:701–3.

    Article  CAS  PubMed  Google Scholar 

  32. Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov. 2014;13:852–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, Angoli L, Bramucci E, Marinoni B, Ferlini M, Moretti E, Raisaro A, Repetto A, Schwartz PJ, Tavazzi L. High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol. 2011;147:124–31.

    Article  PubMed  Google Scholar 

  34. Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther. 2007;116:173–91.

    Article  CAS  PubMed  Google Scholar 

  35. Debevec T, Keramidas ME, Norman B, Gustafsson T, Eiken O, Mekjavic IB. Acute short-term hyperoxia followed by mild hypoxia does not increase EPO production: resolving the “normobaric oxygen paradox”. Eur J Appl Physiol. 2012;112:1059–65.

    Article  CAS  PubMed  Google Scholar 

  36. Ludman AJ, Yellon DM, Hasleton J, Ariti C, Babu GG, Boston-Griffiths E, Venugopal V, Walker M, Holdright D, Swanton H, Crake T, Brull D, Moon JC, Puranik R, Muthurangu V, Mutharangu V, Taylor A, Hausenloy DJ. Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart. 2011;97:1560–5.

    Article  CAS  PubMed  Google Scholar 

  37. Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, Barsness GW, Prather K, Heitner JF, Kilaru R, Gruberg L, Hasselblad V, Greenbaum AB, Patel M, Kim RJ, Talan M, Ferrucci L, Longo DL, Lakatta EG, Harrington RA, REVEAL Investigators. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011;305:1863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, Egrie J. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10:2392–5.

    CAS  PubMed  Google Scholar 

  39. Yelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589(Pt 6):1251–8.

    Article  Google Scholar 

  40. Durussel J, et al. Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men. Plos One. 2013;8(2):e56151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Epoetin alfa. Medscape. http://reference.medscape.com/drug/epogen-procrit-epoetin-alfa-342151. Accessed 21 June 2015.

  42. Meloni EG, Gillis TE, Manoukian J, Kaufman MJ. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD). PLoS One. 2014;9(8):e106189.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giacalone M, Abramo A, Giunta F, Forfori F. Xenon-related analgesia: a new target for pain treatment. Clin J Pain. 2013;29(7):639–43.

    Article  PubMed  Google Scholar 

  44. Thevis M, Piper T, Geyer H, Thomas A, Schaefer MS, Kienbaum P, Schänzer W. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(13):1501–6.

    Article  CAS  PubMed  Google Scholar 

  45. Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S. The blood-gas partition coefficient of xenon may be lower than generally accepted. Br J Anaesth. 1998;80(2):255–6.

    Article  CAS  PubMed  Google Scholar 

  46. Balestra C, Germonpré P, Poortmans JR, Marroni A. Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: the “normobaric oxygen paradox”. J Appl Physiol. 2006;100:512–8.

    Article  CAS  PubMed  Google Scholar 

  47. Keramidas ME, Kounalakis SN, Debevec T, Norman B, Gustafsson T, Eiken O, Mekjavic IB. Acute normobaric hyperoxia transiently attenuates plasma erythropoietin concentration in healthy males: evidence against the “normobaric oxygen paradox” theory. Acta Physiol (Oxf). 2011;202:91–8.

    Article  CAS  Google Scholar 

  48. Momeni M, De Kock M, Devuyst O, Liistro G. Effect of N-acetyl-cysteine and hyperoxia on erythropoietin production. Eur J Appl Physiol. 2011;111:2681–6.

    Article  CAS  PubMed  Google Scholar 

  49. Miller ME, Cronkite EP, Garcia JF. Plasma levels of immunoreactive erythropoietin after acute blood loss in man. Br J Haematol. 1982;52(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  50. Liu W, Liu Y, Chen H, Liu K, Tao H, Sun X. Xenon preconditioning: molecular mechanisms and biological effects. Med Gas Res. 2013;3:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RR, MC, CS,together with JN conceived the study and drafted the manuscript. JN, MB, MM, AG, GS, and CE carried out the experiments and data acquisition. AG and OG analyzed the blood samples with respect to the measured cytokines, EPO, and hemoglobin (OG). CE performed the in vitro analysis. MM carried out gas chromatographic analyses (blood probes and exhaled air probes). MC, CS, and JN analyzed the received data. JN and CS designed the artwork (Fig. 7). GS and OG revised the manuscript, emphasizing the relevance of EPO and resulting effects on sportsmen. All authors revised and approved the final version of the manuscript. All authors agree to be accountable for all aspects of the work and ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

We thank Bernd Simon for construction of the respirator set-up and for the artwork (Online resource 1). Furthermore we would like to thank Mrs Hiltrud Niggemann (Jena, Germany) for statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stoppe.

Ethics declarations

Declaration of interests and funding

All authors read and completed the conflict of interest form. Christian Stoppe, Julia Ney, Martin Brenke, Andreas Goetzenich, Christoph Emontzpohl, Gereon Schälte, Oliver Grottke, Manfred Möller, Rolf Rossaint, and Mark Coburn declare that they have no conflicts of interest. No conflicts of interest relevant to this article were reported. All costs to conduct this trial were covered by the Department of Anesthesiology. No grants were received for this project.

Ethical approval

All procedures performed in the study involving human participants received approval by the local institutional review board (EK 059/14) and the German Federal Drug Administration (BfArM) and were in accordance with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study. The study was registered at the European Medicines Agency (EudraCT-number: 2014-000973-38) and at ClinicalTrials.gov (NCT number: 02129400).

Additional information

C. Stoppe and J. Ney contributed equally as first authors.

A correction to this article is available online at https://doi.org/10.1007/s40279-017-0821-0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoppe, C., Ney, J., Brenke, M. et al. Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial. Sports Med 46, 1753–1766 (2016). https://doi.org/10.1007/s40279-016-0505-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0505-1

Navigation