Skip to main content
Log in

Transcriptomic Segregation of Human Autoantigens Useful for the Diagnosis of Autoimmune Diseases

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The measurement of autoantibodies in the clinical care of autoimmune patients allows for diagnosis, monitoring, and even disease prediction. Despite their clinical utility, the functional significance of autoantibody target proteins in many autoimmune diseases remains unclear. Here we present a comprehensive review of 52 autoantigens commonly employed for the serological diagnosis of 24 autoimmune diseases. We discuss their function, whether they have extracellular-exposed epitopes, and whether antibodies to these proteins are known to be pathogenic. Transcriptomics (RNA-Seq) datasets were mined to display messenger RNA (mRNA) expression of the autoantigens across 32 tissues and organs. This analysis revealed that autoantigens cluster into one of three groups: expression in the tissue most strongly affected in the disease (Group I), ubiquitous expression with enrichment in immune tissues (Group II), or expression in other tissues not typically associated with the clinical presentation (Group III). Clustering demonstrated that the autoantigens within Group I were often proteins containing extracellular epitopes, many of which are targets of pathogenic autoantibodies. Group II autoantigens were targets for several rheumatological diseases, including Sjögren syndrome, systemic lupus erythematosus, myositis, and systemic sclerosis, and were ubiquitously expressed with enrichment in immune-rich tissues. This raises the possibility that immune cells in Group II disorders may be the source of autoimmunization and/or targets of immune cell responses. Since tissues showing enriched autoantigen gene expression may contribute to the development of autoantibodies and subsequent autoimmunity, the emergent patterns arising from the autoantigen transcriptomic profiles may provide a new heuristic framework to deconvolute these complex disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eaton WW, Pedersen MG, Atladottir HO, Gregory PE, Rose NR, Mortensen PB. The prevalence of 30 ICD-10 autoimmune diseases in Denmark. Immunol Res. 2010;47(1–3):228–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–95.

    Article  CAS  PubMed  Google Scholar 

  3. Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol. 2013;9(11):646–59.

    Article  CAS  PubMed  Google Scholar 

  4. Invernizzi P, Gershwin ME. The genetics of human autoimmune disease. J Autoimmun. 2009;33(3–4):290–9.

    Article  CAS  PubMed  Google Scholar 

  5. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008;4(9):491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burbelo PD, Keller J, Kopp JB. New horizons for human pathogenic autoantibodies. Discov Med. 2015;20(108):17–25.

    PubMed  Google Scholar 

  8. Castro C, Gourley M. Diagnostic testing and interpretation of tests for autoimmunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S238–47.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33.

    Article  CAS  PubMed  Google Scholar 

  10. Jonsson R, Theander E, Sjostrom B, Brokstad K, Henriksson G. Autoantibodies present before symptom onset in primary Sjogren syndrome. JAMA. 2013;310(17):1854–5.

    Article  CAS  PubMed  Google Scholar 

  11. Sosenko JM, Skyler JS, Palmer JP, Krischer JP, Yu L, Mahon J, et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care. 2013;36(9):2615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burbelo PD, O’Hanlon TP. New autoantibody detection technologies yield novel insights into autoimmune disease. Curr Opin Rheumatol. 2014;26(6):717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ching KH, Burbelo PD, Tipton C, Wei C, Petri M, Sanz I, et al. Two major autoantibody clusters in systemic lupus erythematosus. PLoS One. 2012;7(2):e32001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brorsson CA, Onengut S, Chen WM, Wenzlau J, Yu L, Baker P, et al. Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in type 1 diabetes. Diabetes. 2015;64(8):3017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Price JV, Haddon DJ, Kemmer D, Delepine G, Mandelbaum G, Jarrell JA, et al. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus. J Clin Invest. 2013;123(12):5135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hueber W, Kidd BA, Tomooka BH, Lee BJ, Bruce B, Fries JF, et al. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 2005;52(9):2645–55.

    Article  CAS  PubMed  Google Scholar 

  17. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202(4):473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexopoulos H, Dalakas MC. Immunology of stiff person syndrome and other GAD-associated neurological disorders. Expert Rev Clin Immunol. 2013;9(11):1043–53.

    Article  CAS  PubMed  Google Scholar 

  19. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.

    Article  PubMed  Google Scholar 

  20. Wenzlau JM, Hutton JC. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr Diab Rep. 2013;13(5):608–15.

    Article  CAS  PubMed  Google Scholar 

  21. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  22. Ha JC, Richman DP. Myasthenia gravis and related disorders: pathology and molecular pathogenesis. Biochim Biophys Acta. 2015;1852(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zisimopoulou P, Brenner T, Trakas N, Tzartos SJ. Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev. 2013;12(9):924–30.

    Article  CAS  PubMed  Google Scholar 

  24. Greco A, Rizzo MI, De Virgilio A, Gallo A, Fusconi M, Pagliuca G, et al. Goodpasture’s syndrome: a clinical update. Autoimmun Rev. 2015;14(3):246–53.

    Article  PubMed  Google Scholar 

  25. Pedchenko V, Bondar O, Fogo AB, Vanacore R, Voziyan P, Kitching AR, et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N Engl J Med. 2010;363(4):343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beck LH Jr, Salant DJ. Membranous nephropathy: from models to man. J Clin Invest. 2014;124(6):2307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brandao Neto RA, de Carvalho JF. Diagnosis and classification of Addison’s disease (autoimmune adrenalitis). Autoimmun Rev. 2014;13(4–5):408–11.

  29. Toh BH. Diagnosis and classification of autoimmune gastritis. Autoimmun Rev. 2014;13(4–5):459–62.

    Article  CAS  PubMed  Google Scholar 

  30. Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Diagnostic criteria of autoimmune hepatitis. Autoimmun Rev. 2014;13(4–5):435–40.

    Article  CAS  PubMed  Google Scholar 

  31. Baum S, Sakka N, Artsi O, Trau H, Barzilai A. Diagnosis and classification of autoimmune blistering diseases. Autoimmun Rev. 2014;13(4–5):482–9.

    Article  CAS  PubMed  Google Scholar 

  32. Jakes AD, Bradley S, Donlevy L. Dermatitis herpetiformis. BMJ. 2014;348:g2557.

    Article  PubMed  Google Scholar 

  33. Ben-Dov I, Segel MJ. Autoimmune pulmonary alveolar proteinosis: clinical course and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):513–7.

    Article  CAS  PubMed  Google Scholar 

  34. Silva de Souza AW. Autoantibodies in systemic vasculitis. Front Immunol. 2015;6:184.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

    Article  CAS  PubMed  Google Scholar 

  37. Fox RI. Sjogren’s syndrome. Lancet. 2005;366(9482):321–31.

    Article  CAS  PubMed  Google Scholar 

  38. Agmon-Levin N, Mosca M, Petri M, Shoenfeld Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev. 2012;11(8):593–5.

    Article  CAS  PubMed  Google Scholar 

  39. Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;372(18):1734–47.

    Article  PubMed  Google Scholar 

  40. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.

    Article  CAS  PubMed  Google Scholar 

  41. Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol. 2013;8:303–30.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly CP, Bai JC, Liu E, Leffler DA. Advances in diagnosis and management of celiac disease. Gastroenterology. 2015;148(6):1175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McGettigan PA. Transcriptomics in the RNA-seq era. Curr Opin Chem Biol. 2013;17(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  44. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  PubMed  Google Scholar 

  45. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397–406.

    Article  CAS  PubMed  Google Scholar 

  46. Pierson E, Consortium GT, Koller D, Battle A, Mostafavi S, Ardlie KG, et al. Sharing and specificity of co-expression networks across 35 human tissues. PLoS Comput Biol. 2015;11(5):e1004220.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Drori T, Chapman J. Diagnosis and classification of neuromyelitis optica (Devic’s syndrome). Autoimmun Rev. 2014;13(4–5):531–3.

    Article  CAS  PubMed  Google Scholar 

  48. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol. 1995;269(6 Pt 2):F775–85.

    CAS  PubMed  Google Scholar 

  49. Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol. 2013;23(6):684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ali F, Rowley M, Jayakrishnan B, Teuber S, Gershwin ME, Mackay IR. Stiff-person syndrome (SPS) and anti-GAD-related CNS degenerations: protean additions to the autoimmune central neuropathies. J Autoimmun. 2011;37(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  51. Bingley PJ. Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab. 2010;95(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  52. Morran MP, Casu A, Arena VC, Pietropaolo S, Zhang YJ, Satin LS, et al. Humoral autoimmunity against the extracellular domain of the neuroendocrine autoantigen IA-2 heightens the risk of type 1 diabetes. Endocrinology. 2010;151(6):2528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Lummel M, van Veelen PA, de Ru AH, Janssen GM, Pool J, Laban S, et al. Dendritic cells guide islet autoimmunity through a restricted and uniquely processed peptidome presented by high-risk HLA-DR. J Immunol. 2016;196(8):3253–63.

    Article  PubMed  Google Scholar 

  54. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron. 1995;15(3):573–84.

    Article  CAS  PubMed  Google Scholar 

  55. Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002;195(6):747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reunala T, Salmi TT, Hervonen K. Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol. 2015;95(8):917–22.

    Article  CAS  PubMed  Google Scholar 

  57. Kallenberg CG. Pathogenesis of ANCA-associated vasculitides. Ann Rheum Dis. 2011;70(Suppl 1):i59–63.

    Article  CAS  PubMed  Google Scholar 

  58. Harris ML, Darrah E, Lam GK, Bartlett SJ, Giles JT, Grant AV, et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 2008;58(7):1958–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541–53.

    Article  CAS  PubMed  Google Scholar 

  60. Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, et al. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis. 2004;63(4):373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J Autoimmun. 2012;39(1–2):77–82.

    Article  CAS  PubMed  Google Scholar 

  62. Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science. 2015;350(6259):455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaisson NF, Paik J, Orbai AM, Casciola-Rosen L, Fiorentino D, Danoff S, et al. A novel dermato-pulmonary syndrome associated with MDA-5 antibodies: report of 2 cases and review of the literature. Medicine (Baltimore). 2012;91(4):220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science. 2014;343(6167):152–7.

    Article  CAS  PubMed  Google Scholar 

  65. Leung PS, Wang J, Naiyanetr P, Kenny TP, Lam KS, Kurth MJ, et al. Environment and primary biliary cirrhosis: electrophilic drugs and the induction of AMA. J Autoimmun. 2013;41:79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci. 2007;104(43):17040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity. 2003;36(8):481–90.

    Article  CAS  PubMed  Google Scholar 

  68. Vakaloglou KM, Mavragani CP. Activation of the type I interferon pathway in primary Sjogren’s syndrome: an update. Curr Opin Rheumatol. 2011;23(5):459–64.

    Article  CAS  PubMed  Google Scholar 

  69. Baechler EC, Bilgic H, Reed AM. Type I interferon pathway in adult and juvenile dermatomyositis. Arthritis Res Ther. 2011;13(6):249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu M, Assassi S. The role of type 1 interferon in systemic sclerosis. Front Immunol. 2013;4:266.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15(9):369.

    Article  PubMed  Google Scholar 

  72. Rothwell S, Cooper RG, Lamb JA, Chinoy H. Entering a new phase of immunogenetics in the idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2013;25(6):735–41.

    Article  CAS  PubMed  Google Scholar 

  73. Mayes MD. The genetics of scleroderma: looking into the postgenomic era. Curr Opin Rheumatol. 2012;24(6):677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burbelo PD, Ambatipudi K, Alevizos I. Genome-wide association studies in Sjogren’s syndrome: what do the genes tell us about disease pathogenesis? Autoimmun Rev. 2014;13(7):756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lerner A, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimmun Rev. 2015;14(11):1038–47.

    Article  PubMed  Google Scholar 

  76. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Intramural Research, National Institute of Dental and Craniofacial Research, and the Clinical Center, National Institutes of Health. The views expressed in this review are those of the authors and do not necessarily represent the views of the National Institutes of Health or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Burbelo.

Ethics declarations

Conflict of interest

Peter D. Burbelo, Michael J. Iadarola, Ilias Alevizos, and Matthew R. Sapio declare no conflicts of interest. No editorial support was used in the preparation of this manuscript.

Funding

This work was supported by the intramural research programs of the National Institute of Dental and Craniofacial Research and the National Institutes of Health Clinical Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burbelo, P.D., Iadarola, M.J., Alevizos, I. et al. Transcriptomic Segregation of Human Autoantigens Useful for the Diagnosis of Autoimmune Diseases. Mol Diagn Ther 20, 415–427 (2016). https://doi.org/10.1007/s40291-016-0211-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0211-6

Keywords

Navigation