Skip to main content
Log in

Pivotal MicroRNAs in Melanoma: A Mini-Review

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Melanoma is a common skin cancer associated with ultraviolet light exposure and genetic variance. However, the etiology and molecular mechanisms of melanoma remain unknown. Recent studies have shown that microRNAs (miRNAs) can play key roles in the development and prognosis of this disease. In this study, we reviewed several pivotal miRNAs that may contribute to melanoma by involvement in the processes of invasion, migration, and metastasis of melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  4. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes AE, Bradley DT, Campbell M, et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet. 2011;89(5):628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Pontual L, Yao E, Callier P, et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet. 2011;43(10):1026–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jones K, Nourse JP, Keane C, et al. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):253–64.

    Article  CAS  PubMed  Google Scholar 

  8. Smith T, Rajakaruna C, Caputo M, et al. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3(21):333.

    PubMed  PubMed Central  Google Scholar 

  9. Skarn M, Namlos HM, Noordhuis P, et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21:873–83.

    Article  CAS  PubMed  Google Scholar 

  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi:10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  11. Guo J, Qin S, Liang J, et al. Chinese guidelines on the diagnosis and treatment of melanoma (2015 edition). Ann Transl Med. 2015;3:322.

    PubMed  PubMed Central  Google Scholar 

  12. Saldanha G, Potter L, Lee YS, et al. MicroRNA-21 expression and its pathogenetic significance in cutaneous melanoma. Melanoma Res. 2016;26(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wang K, Zhang ZW. Expression of miR-203 is decreased and associated with the prognosis of melanoma patients. Int J Clin Exp Pathol. 2015;8(10):13249–54.

    PubMed  PubMed Central  Google Scholar 

  14. Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis. 2012;33:1823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levati L, Alvino E, Pagani E, et al. Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155. Int J Oncol. 2009;35:393–400.

    CAS  PubMed  Google Scholar 

  16. Chen J, Zhang X, Lentz C, et al. MiR-193b regulates Mcl-1 in melanoma. Am J Pathol. 2011;179:2162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. MiRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011;286:16606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Brenn T, Brown ER, Doherty V, Melton DW. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer. 2012;106:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller DW, Bosserhoff AK. Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene. 2008;27:6698–706.

    Article  CAS  PubMed  Google Scholar 

  20. Fu TY, Chang CC, Lin CT, et al. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res. 2011;317:445–51.

    Article  CAS  PubMed  Google Scholar 

  21. Noguchi S, Mori T, Hoshino Y, et al. Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma. J Vet Med Sci. 2012;74:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Segura MF, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009;106:1814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tembe V, Schramm SJ, Stark MS, et al. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res. 2015;28:254–66.

    Article  CAS  PubMed  Google Scholar 

  24. Jayawardana K, Schramm SJ, Tembe V, et al. Identification, review, and systematic cross-validation of microrna prognostic signatures in metastatic melanoma. J Invest Dermatol. 2016;136:245–54.

    Article  CAS  PubMed  Google Scholar 

  25. Musilova K, Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia. 2015;29:1004–17.

    Article  CAS  PubMed  Google Scholar 

  26. Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  27. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Investig. 2010;120:3912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:70.

    Article  CAS  Google Scholar 

  30. Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Correa AM, Hoque A, et al. Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer. 2011;128:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang CH, Yue J, Pfeffer SR, et al. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011;286:39172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Satzger I, Mattern A, Kuettler U, et al. MicroRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21:509–14.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang L, Lv X, Li J, et al. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem. 2012;114:582–8.

    Article  CAS  PubMed  Google Scholar 

  35. Saldanha G, Potter L, Lee YS, et al. MicroRNA-21 expression and its pathogenetic significance in cutaneous melanoma. Melanoma Res. 2016;26:21–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yang CH, Pfeffer SR, Sims M, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015;290:6037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2:e610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stanczyk J, Ospelt C, Karouzakis E, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011;63:373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ikenaga N, Ohuchida K, Mizumoto K, et al. MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann Surg Oncol. 2010;17:3120–8.

    Article  PubMed  Google Scholar 

  41. Furuta M, Kozaki KI, Tanaka S, et al. MiR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.

    Article  CAS  PubMed  Google Scholar 

  42. Yu X, Jiang X, Li H, et al. MiR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2014;23:576–85.

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Wang X, Liang H, et al. MiR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCalpha. PLoS One. 2013;8:e73985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bu P, Yang P. MicroRNA-203 inhibits malignant melanoma cell migration by targeting versican. Exp Ther Med. 2014;8:309–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang K, Zhang ZW. Expression of miR-203 is decreased and associated with the prognosis of melanoma patients. Int J Clin Exp Pathol. 2015;8:13249–54.

    PubMed  PubMed Central  Google Scholar 

  46. Noguchi S, Kumazaki M, Mori T, et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol. doi:10.1111/vco.12118 (Epub 2014 Oct 3).

  47. Noguchi S, Kumazaki M, Yasui Y, et al. MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol. 2014;134:461–9.

    Article  CAS  PubMed  Google Scholar 

  48. van Kempen LC, van den Hurk K, Lazar V, et al. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch. 2012;461:441–8.

    Article  CAS  PubMed  Google Scholar 

  49. Noguchi S, Mori T, Hoshino Y, et al. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas. Vet Comp Oncol. 2013;11:113–23.

    Article  CAS  PubMed  Google Scholar 

  50. Bar-Eli M. Searching for the ‘melano-miRs’: miR-214 drives melanoma metastasis. EMBO J. 2011;30:1880–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maubach G, Lim MC, Chen J, et al. MiRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 2011;17:2748–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68:425–33.

    Article  CAS  PubMed  Google Scholar 

  53. Peng RQ, Wan HY, Li HF, et al. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem. 2012;287:14301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang XJ, Ye H, Zeng CW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 2010;3:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng M, Ye Q, Qin Z, et al. MiR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. Tumour Biol. 2013;34:1793–800.

    Article  CAS  PubMed  Google Scholar 

  56. Penna E, Orso F, Cimino D, et al. MicroRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30:1990–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mishra RR, Kneitz S, Schartl M. Comparative analysis of melanoma deregulated miRNAs in the medaka and Xiphophorus pigment cell cancer models. Comp Biochem Physiol Toxicol Pharmacol. 2014;163:64–76.

    Article  CAS  Google Scholar 

  58. Penna E, Orso F, Cimino D, et al. MiR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res. 2013;73:4098–111.

    Article  CAS  PubMed  Google Scholar 

  59. Smith AR, Marquez RT, Tsao WC, et al. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget. 2015;6:12558–73.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dong S, Jin M, Li Y, et al. MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncol Rep. 2016;35(4):2151–8. doi:10.3892/or.2016.4604.

    PubMed  Google Scholar 

  61. Shen H, Wang L, Ge X, et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget. doi:10.18632/oncotarget.8011. [Epub 2016 Mar 9].

  62. Bemis LT, Chen R, Amato CM, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.

    Article  CAS  PubMed  Google Scholar 

  63. Chen X, Wang J, Shen H, et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci. 2011;52:1193–9.

    Article  CAS  PubMed  Google Scholar 

  64. Deng Y, Deng H, Bi F, et al. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 2011;7:133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hao S, Luo C, Abukiwan A, et al. MiR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol. 2015;24:947–52.

    Article  CAS  PubMed  Google Scholar 

  66. Luo C, Tetteh PW, Merz PR, et al. MiR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013;133:768–75.

    Article  CAS  PubMed  Google Scholar 

  67. Li N. Low expression of mir-137 predicts poor prognosis in cutaneous melanoma patients. Med Sci Monit. 2016;22:140–4.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim KH, Bin BH, Kim J, et al. Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res. 2014;27:140–4.

    Article  CAS  PubMed  Google Scholar 

  69. Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer. 2011;128:2274–83.

    Article  CAS  PubMed  Google Scholar 

  70. Huang L, Luo J, Cai Q, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128:1758–69.

    Article  CAS  PubMed  Google Scholar 

  71. Nakanishi H, Taccioli C, Palatini J, et al. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene. 2014;33:702–12.

    Article  CAS  PubMed  Google Scholar 

  72. Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.

    CAS  PubMed  Google Scholar 

  73. Veerla S, Lindgren D, Kvist A, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124:2236–42.

    Article  CAS  PubMed  Google Scholar 

  74. Glud M, Rossing M, Hother C, et al. Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res. 2010;20:479–84.

    Article  CAS  PubMed  Google Scholar 

  75. Glud M, Manfe V, Biskup E, et al. MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res. 2011;21:253–6.

    Article  CAS  PubMed  Google Scholar 

  76. Nyholm AM, Lerche CM, Manfe V, et al. MiR-125b induces cellular senescence in malignant melanoma. BMC Dermatol. 2014;14:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kappelmann M, Kuphal S, Meister G, et al. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene. 2013;32:2984–91.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Lu L, Xiong Y, et al. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol. 2014;39:376–84.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Na S, Liu C, et al. MicroRNA-125b suppresses the epithelial–mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol. 2016;37(5):5941–9. doi:10.1007/s13277-015-4409-8.

    Article  CAS  PubMed  Google Scholar 

  80. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18:549–57.

    Article  CAS  PubMed  Google Scholar 

  81. Noguchi S, Mori T, Otsuka Y, et al. Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem. 2012;287(15):11769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.

    Article  CAS  PubMed  Google Scholar 

  83. Martin del Campo SE, Latchana N, Levine KM, et al. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One. 2015;10:e0115919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Garofalo M, Di Leva G, Romano G, et al. MiR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16:498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cc in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379:790–4.

    Article  CAS  PubMed  Google Scholar 

  86. Li M, Long C, Yang G, Luo Y, Du H. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun. 2016;471:361–7.

    Article  CAS  PubMed  Google Scholar 

  87. Greenberg E, Hershkovitz L, Itzhaki O, et al. Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One. 2011;6:e18936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu S, Kumar SM, Lu H, et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol. 2012;226:61–72.

    Article  CAS  PubMed  Google Scholar 

  89. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 2011;129:1064–74.

    Article  CAS  PubMed  Google Scholar 

  90. Braig S, Mueller DW, Rothhammer T, Bosserhoff AK. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 2010;67:3535–48.

    Article  CAS  PubMed  Google Scholar 

  91. Migliore C, Petrelli A, Ghiso E, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–36.

    Article  CAS  PubMed  Google Scholar 

  92. Elson-Schwab I, Lorentzen A, Marshall CJ. MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PloS One. 2010;5(10):e13176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mazar J, DeYoung K, Khaitan D, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One. 2010;5:e13779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Levy C, Khaled M, Iliopoulos D, et al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 2010;40:841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boyle GM, Woods SL, Bonazzi VF, et al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 2011;24:525–37.

    Article  CAS  PubMed  Google Scholar 

  96. Gaziel-Sovran A, Segura MF, Di Micco R, et al. MiR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 2011;20:104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weber CE, Luo C, Hotz-Wagenblatt A, et al. MiR-339-3p is a tumor suppressor in melanoma. Cancer Res. doi:10.1158/0008-5472.CAN-15-2932 (Epub 2016 April 15).

  98. Bai J, Zhang Z, Li X, Liu H. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression. Int J Clin Exp Pathol. 2015;8:4913–22.

    PubMed  PubMed Central  Google Scholar 

  99. Li F, Li XJ, Qiao L, et al. MiR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6. Exp Mol Med. 2014;46:e116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen R, Greenberg E, Nemlich Y, Schachter J, Markel G. MiR-17 regulates melanoma cell motility by inhibiting the translation of ETV1. Oncotarget. 2015;6:19006–16.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen Y, Zhang Z, Luo C, Chen Z, Zhou J. MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep. doi:10.3892/or.2016.4824 (Epub 2016 May 20).

  102. Fu X, Meng Z, Liang W, et al. MiR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene. 2014;33:4296–306.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou J, Xu D, Xie H, et al. MiR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther. 2015;16:846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang P, Bai H, Liu G, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015;234:151–61.

    Article  CAS  PubMed  Google Scholar 

  105. Giles KM, Brown RA, Ganda C, et al. MicroRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-kappaB. Oncotarget. doi:10.18632/oncotarget.9421. (Epub 2016 May 17).

  106. Liu R, Xie H, Luo C, et al. Identification of FLOT2 as a novel target for microRNA-34a in melanoma. J Cancer Res Clin Oncol. 2015;141:993–1006.

    Article  CAS  PubMed  Google Scholar 

  107. Jin L, Hu WL, Jiang CC, et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA. 2011;108:15840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author Contributions

Li He and Lechun Lu conceived and designed this work. Lechun Lu, Zhenjun Deng, Jingang Hao, Dongyun Lei, and Yongjing He screened and analyzed the data. Lechun Lu, Zhenjun Deng, Jingang Hao, Dongyun Lei, and Li He wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lechun Lu or Li He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest that are directly relevant to the content of this article.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC; Grant Number 81560502), the National Natural Science Foundation of Yunnan Province (Grant Numbers 2013FB044 and 2014FB008), and the Education Department Fund of Yunnan Province (Grant Numbers 2014Y165, 2015Z082); and by a Doctoral Graduate Academic Newcomer Award of Yunnan Province (2014, 2015).

Additional information

Z. Deng, J. Hao, and D. Lei contributed equally to this work and should be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Hao, J., Lei, D. et al. Pivotal MicroRNAs in Melanoma: A Mini-Review. Mol Diagn Ther 20, 449–455 (2016). https://doi.org/10.1007/s40291-016-0219-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0219-y

Keywords

Navigation