Skip to main content
Log in

Hölder-Type Global Error Bounds for Non-degenerate Polynomial Systems

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

Let F := (f 1, …, f p ): ℝn → ℝp be a polynomial map, and suppose that S := {x ∈ ℝn : f i (x) ≤ 0,i = 1, …, p}≠. Let d := maxi =1, …, p deg f i and \(\mathcal {H}(d, n, p) := d(6d - 3)^{n + p - 1}.\) Under the assumptions that the map F : ℝn → ℝp is convenient and non-degenerate at infinity, we show that there exists a constant c > 0 such that the following so-called Hölder-type global error bound result holds \(c d(x,S) \le [f(x)]_{+}^{\frac {2}{\mathcal {H}(2d, n, p)}} + [f(x)]_{+} \quad \textrm { for all } \quad x \in \mathbb {R}^{n},\) where d(x,S) denotes the Euclidean distance between x and S, f(x) := maxi=1, …, p f i (x), and [f(x)]+ := max{f(x),0}. The class of polynomial maps (with fixed Newton polyhedra), which are non-degenerate at infinity, is generic in the sense that it is an open and dense semi-algebraic set. Therefore, Hölder-type global error bounds hold for a large class of polynomial maps, which can be recognized relatively easily from their combinatoric data. This follows up the result on a Frank-Wolfe type theorem for non-degenerate polynomial programs in Dinh et al. (Mathematical Programming Series A, 147(16), 519–538, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Gusein-Zade, S., Varchenko, A.N.: Singularities of Differentiable Maps. Monogr. Math., vol. I And II, Birkhäuser, Basel (1985)

  2. Auslender, A.A., Crouzeix, J.-P.: Global regularity theorem. Math. Oper. Res. 13, 243–253 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslender, A.A., Crouzeix, J.-P.: Well behaved asymptotical convex functions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6, 10–121 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslender, A.A., Cominetti, R., Crouzeix, J.-P.: Convex functions with unbounded level sets. SIAM J. Optim. 3, 669–687 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedetti, R., Risler, J.: Real Algebraic and Semi-algebraic Sets Hermann (1991)

  6. Bierstone, E., Milman, P.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Vol. 36 springer (1998)

  8. Bolte, J., Daniilidis, A., Lewis, A.S.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  MATH  Google Scholar 

  9. Borwein, J.M., Li, G., Yao, L.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets. SIAM J. Optim. 24, 498–527 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Broughton, S.: Milnor number and topology of polynomial hypersurfaces. Invent. Math. 92, 217–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F.H.: Optimization and Nonsmooth Analysis. New York et al., John Wiley & Sons (1983)

  13. Clarke, F.H., Ledyaev, Y.S., Sterm, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory. Springer-Verlag Inc., New York (1998)

  14. Corvellec, J.-N., Motreanu, V.V.: Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program. Ser. A 114(2), 291–319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinh, S.T., Hà, H.V., Thao, N.T.: Łojasiewicz inequality for polynomial functions on non compact domains. Int. J. Math. 23(4), 1250033 (2012). doi:10.1142/S0129167X12500334. (28 pages)

    Article  MATH  Google Scholar 

  16. Dinh, S.T., Hà, H.V., Phạm, T. S.: A Frank-Wolfe type theorem for nondegenerate polynomial programs. Mathematical Programming Series A 147, 519–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinh, S.T., Hà, H.V., Phạm, T.S., Thao, N.T.: Global Łojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410(2), 541–560 (2014)

    Article  MathSciNet  Google Scholar 

  18. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J 84, 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ekeland, I.: Nonconvex minimization problems. Bull. A.M.S 1, 443–474 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Forti, M., Tesi, A.: The Łojasiewicz exponent at an equilibrium point of a standard CNN is 1/2. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16(8), 2191–2205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, Publishers, San Francisco (1979)

    MATH  Google Scholar 

  23. Hà, H.V., Duc, N.H.: Łojasiewicz inequality at infinity for polynomials in two real variables. Math. Z 266, 243–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hà, H.V.: Global Hölderian error bound for non-degenerate polynomials. SIAM J. Optim. 23(2), 917–933 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoffman, A.J.: On approximate solutions of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  26. Hörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3 (53), 555–568 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55 (3), 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji, S., Kollár, J., Shiffman, B.: A global Łojasiewicz inequality for algebraic varieties. Trans. Am. Math. Soc. 329(2), 813–818 (1992)

    MATH  Google Scholar 

  29. Khovanskii, A.G.: Newton polyhedra and toroidal varieties. Funct. Anal. Appl. 11, 289–296 (1978)

    Article  MATH  Google Scholar 

  30. Khovanskii, A.G.: Fewnomials. Translated from the Russian by Smilka Zdravkovska Translations of Mathematical Monographs, 88. American Mathematical Society, Providence, RI (1991)

  31. Klatte, D.: Hoffman’s error bound for systems of convex inequalities. Mathematical Programming with Data Perturbations, 185–199, Lecture Notes in Pure and Appl. Math., 195 Dekker New York (1998)

  32. Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. 84, 137–140 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kollár, J.: An effective Lojasiewicz inequality for real polynomials. Period. Math. Hungar. 38(3), 213–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kouchnirenko, A.G.: Polyhedres de Newton et nombre de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MathSciNet  Google Scholar 

  35. Lemaire, B.: Bonne position, conditionnement, et bon comportement asymptotique. sém. Anal. Convexe 22, Exp. No. 5 12 pp (1992)

  36. Lewis, A.S., Pang, J.S.: Error Bounds for Convex Inequality Systems. Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), 75-110, Nonconvex Optim. Appl., 27, Kluwer Acad. Publ., Dordrecht (1998)

  37. Li, G.: On the asymptotic well behaved functions and global error bound for convex polynomials. SIAM J. Optim. 20(4), 1923–1943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, G., Mordukhovich, B.S.: Hölder metric subregularity with applications to proximal point method. SIAM J. Optim. 22, 1655–1684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. Ser. A 137(1-2), 37–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, G., Mordukhovich, B.S., Phạm, T.S.: New fractional error bounds for polynomial systems with applications to hölderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, W.: Error bounds for piecewise convex quadratic programs and applications. SIAM J. Control Optim. 33, 1510–1529 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Łojasiewicz, S.: Division d’une distribution par une fonction analytique de variables réelles. C. R. Acad. S.i. Paris 246, 683–686 (1958)

    MATH  Google Scholar 

  43. Luo, Z.-Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Program. 67, 1–28 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luo, Z.-Q., Sturm, J.F. In: Frenk, H., Roos, K., Terlaky, T., Zhang (eds.) : Error bound for quadratic systems, in high performance optimization, pp 383–404. Kluwer, Dordrecht, The Netherlands (2000)

  45. Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Miller, C.: Exponentiation is hard to avoid. Proc. Am. Math. Soc. 122, 257–259 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Milnor, J.: Singular points of complex hypersurfaces. Annals of mathematics studies 61 princeton university press (1968)

  48. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II. Applications. Springer, Berlin (2006)

    Google Scholar 

  49. Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indag. Math. 3, 323–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ngai, H.V., Thera, M.: Error bounds for differentiable convex inequality systems in Banach spaces. Math. Program., Ser. B 104(2-3), 465–482 (2005)

    Article  MATH  Google Scholar 

  51. Oka, M.: Non-Degenerate Complete Intersection Singularity. Actualités Mathématiques. Hermann, Paris (1997)

    MATH  Google Scholar 

  52. Pang, J.S.: Error bounds in mathematical programming. Math. Program., Ser. B 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  53. Penot, J.P.: Well-behavior, well-posedness and nonsmooth analysis. In: Proceedings of the 4th International Conference on Mathematical Methods in Operations Research and 6th Workshop on Well-posedness and Stability of Optimization Problems (Sozopol, 1997). Pliska Stud. Math. Bulgar, vol. 12, pp 141–190 (1998)

  54. Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control. 13, 271–273 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren Math Wiss, vol. 317. Springer, New York (1998)

    Google Scholar 

  56. Wu, Z., Ye, J.J.: Sufficient conditions for error bounds. SIAM J. Optim. 12, 421–435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, W.H.: Error bounds for convex polynomials. SIAM J. Optim. 19(4), 1633–1647 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was performed while the authors were visiting Vietnam Institute for Advanced Study in Mathematics (VIASM). The authors would like to thank the Institute for hospitality and support. Si Tiep Dinh and Huy Vui Ha were partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2014.23 and the Vietnam Academy of Science and Technology (VAST). Tien Son Pham was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2016.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Tiep Dinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, S.T., Ha, H.V. & Pham, T.S. Hölder-Type Global Error Bounds for Non-degenerate Polynomial Systems. Acta Math Vietnam 42, 563–585 (2017). https://doi.org/10.1007/s40306-017-0209-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-017-0209-0

Keywords

Mathematics Subject Classification (2010)

Navigation