Skip to main content
Log in

Multivariable Binary MRAC with Guaranteed Transient Performance Using Non-homogeneous Robust Exact Differentiators

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose an extension of the binary model reference adaptive control (BMRAC) for uncertain multivariable linear plants with non-uniform arbitrary relative degree. The BMRAC is a robust adaptive strategy which has good transient properties and robustness of sliding mode control with the important advantage of having a continuous control signal free of chattering. The relative degree obstacle is circumvented using a multivariable version of a hybrid estimation scheme, named global robust exact differentiator (GRED). The hybrid estimator switches between robust exact differentiators (RED) based on higher-order sliding modes and lead filters in a way that the exact derivatives are globally obtained in finite time. To improve the robustness and the transient performance of the GRED, we propose a modification of the switching scheme replacing the conventional RED with a non-homogeneous one. Global exact output tracking is obtained with robustness and guaranteed transient performance without requiring stringent symmetry assumptions on the plant high-frequency-gain matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In direct adaptive control, the controller parameters are directly updated from an adaptive law.

  2. The tracking of more general reference models could be obtained by simply preshaping the reference signal r through a precompensator at the input of the above model.

References

  • Arici, M., & Kara, T. (2020). Robust adaptive fault tolerant control for a process with actuator faults. Journal of Process Control, 92, 169–184.

    Article  Google Scholar 

  • Barkana, I., Teixeira, M. C. M., & Hsu, L. (2006). Mitigation of symmetry condition in positive realness for adaptive control. Automatica, 39(9), 1611–1616.

    Article  MathSciNet  Google Scholar 

  • Battistel, A., Nunes, E.V.L., & Hsu, L. (2014). Multivariable BMRAC extension to arbitrary relative degree using global robust exact differentiators. Proceedings of the 2014 International Workshop on Variable Structure Systems.

  • Battistel, A., Oliveira, T.R., & Rodrigues, V.H.P. (2019). Adaptive control of an unbalanced two-axis gimbal for application to inertially stabilized platforms. in IEEE Conference on Advanced Robotics (ICAR), (Belo Horizonte), pp. 99–104.

  • Costa, R. R., Hsu, L., Imai, A. K., & Kokotović, P. (2003). Lyapunov-based adaptive control of MIMO systems. Automatica, 39(7), 1251–1257.

    Article  MathSciNet  Google Scholar 

  • Fradkov, A. L. (2003). Passification of non-square linear systems and feedback Yakubovich–Kalman–Popov lemma. European Journal of Control, 6(1), 573–582.

    MathSciNet  MATH  Google Scholar 

  • Fridman, L., Shtessel, Y., Edwards, C., & Yan, X. G. (2008). Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. International Journal of Robust and Nonlinear Control, 18, 399–412.

    Article  MathSciNet  Google Scholar 

  • Gerasimov, D., Ortega, R., & Nikiforov, V. (2018). Adaptive control of multivariable systems with reduced knowledge of high frequency gain: Application of dynamic regressor extension and mixing estimators. IFAC PapersOnLine, 51(15), 886–890.

    Article  Google Scholar 

  • Gonzalez, T., Moreno, J. A., & Fridman, L. (2012). Variable gain super-twisting sliding mode control. IEEE Transactions on Automatic Control, 57(8), 2100–2105.

    Article  MathSciNet  Google Scholar 

  • Hsu, L., & Lizarralde, F. (2000). Robust adaptive visual tracking control: analysis and experiments. in Proceedings of the Conference on Control and Applications, (Anchorage), pp. 1–6.

  • Hsu, L., Battistel, A., & Nunes, E. V. L. (2014). Multivariable MRAC design without gain symmetry conditions using a stabilizing multiplier. IEEE Transactions on Automatic Control, 59(4), 1041–1047.

    Article  MathSciNet  Google Scholar 

  • Hsu, L., & Costa, R. R. (1994). B-MRAC: Global exponential stability with a new model reference adaptive controller based on binary control theory. C-TAT - Control-Theory and Advance Technology, 10, 649–668. Special Issue on Sliding Mode Control.

    MathSciNet  Google Scholar 

  • Hsu, L., Costa, R., & Lizarralde, F. (2007). Lyapunov/passivity-based adaptive control of relative degree two MIMO systems with an application to visual servoing. IEEE Transactions on Automatic Control, 52(2), 364–371.

    Article  MathSciNet  Google Scholar 

  • Hsu, L., Teixeira, M.C.M., Costa, R.R., & Assunçao, E. (2011). Necessary and sufficient condition for generalized passivity, passification and application to multivariable adaptive systems. in Proceedings of the 18th IFAC World Congress, (Milan).

  • Hsu, L., Teixeira, M. C. M., Costa, R. R., & Assunção, E. (2015). Lyapunov design of multivariable MRAC via generalized passivation. Asian Journal of Control, 17(6), 1–14.

    MathSciNet  MATH  Google Scholar 

  • Ioannou, P., & Sun, K. (1996). Robust Adaptive Control. New Jersey: Prentice Hall PTR.

    MATH  Google Scholar 

  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Robust and Nonlinear Control, 58(6), 1247–1263.

    MathSciNet  MATH  Google Scholar 

  • Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34(3), 379–384.

    Article  MathSciNet  Google Scholar 

  • Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(09), 924–941.

    Article  MathSciNet  Google Scholar 

  • Levant, A. (2009). Non-homogeneous finite-time-convergent differentiator. in Proceedings of the IEEE Conference on Decision and Control, (Shanghai, P.R. China), pp. 8399–8404

  • Mathelin, M. D., & Bodson, M. (1994). Multivariable adaptive control: Identifiable parametrizataions and parameter convergence. IEEE Transactions on Automatic Control, 39(8), 1612–1617.

    Article  MathSciNet  Google Scholar 

  • Moreno, J.A., & Osorio, M. (2008). A lyapunov approach to second-order sliding mode controllers and observers in Proceedings of the IEEE Conference on Decision and Control, pp. 2856–2861

  • Nagesh, I., & Edwards, C. (2014). A multivariable super-twisting sliding mode approach. Automatica, 50(3), 984–988.

    Article  MathSciNet  Google Scholar 

  • Nunes, E. V. L., Peixoto, A. J., Oliveira, T. R., & Hsu, L. (2014). Global exact tracking for uncertain MIMO linear systems by output feedback sliding mode control. Journal of the Franklin Institute, 351(4), 2015–2032.

    Article  MathSciNet  Google Scholar 

  • Oliveira, T. R., Estrada, A., & Fridman, L. (2017). Global and exact HOSM differentiator with dynamic gains for output-feedback sliding mode control. Automatica, 81(7), 156–163.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman L.M., & Poznyak A.S. (2010). Super-twisting adaptive sliding mode control: A lyapunov design,” in Proceedings of the IEEE Conference on Decision and Control, pp. 5109–5113

  • Tao, G. (2003). Adaptive Control Design and Analysis. New York: John Wiley and Sons Inc.

    Book  Google Scholar 

  • Tao, G., & Ioannou, P. A. (1988). Robust model reference adaptive control for multivariable plants. International Journal of Adaptive Control and Signal Processing, 2(3), 217–248.

    Article  Google Scholar 

  • Tao, G., & Ioannou, P. A. (1990). Persistency of excitation and overparametrization in model reference adaptive control. IEEE Transaction on Automatic Control, 35(2), 254–256.

    Article  MathSciNet  Google Scholar 

  • Teixeira, L. R. L., Oliveira, J., & Araujo, A. D. (2015). Stability analysis of indirect binary model reference adaptive controller for plants with relative degree one. Journal of Control Automation and Electrical Systems, 26(4), 337–347.

    Article  Google Scholar 

  • Wang, C., Wen, C., & Guo, L. (2020). Multivariable adaptive control with uknown signs of the high-frequency matrix using novel nussbaum functions. Automatica, 111, 108618.

    Article  Google Scholar 

  • Willner, Y., Heymann, M., & Bodson, M. (1992). Parameter convergence and uniqueness in nonminimal parametrizations for multivariable adaptive control. SIAM Journal on Control and Optimization, 30(4), 800–815.

    Article  MathSciNet  Google Scholar 

  • Xie, X.-J. (2008). Stability and robustness analysis of MIMO MRAC using \(Kp=L_2 D_2 S_2\) factorization. International Journal of Systems Science, 39, 265–278.

    Article  Google Scholar 

  • Xie, X.-J., & Zhang, Z.-Q. (2005). Robust direct model reference adaptive control using \(Kp=LDU\) factorization for multivariable plants. International Journal of Control, 78, 762–772.

    Article  MathSciNet  Google Scholar 

  • Yanque, I., Nunes, V.L., Costa, R., & Hsu, L. (2012). Binary MIMO MRAC using a passifying multiplier. in Proceedings of the IEEE American Control Conference, (Montreal), pp. 1925–1930

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Battistel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by FAPERJ, CAPES and CNPq.

Appendix A Proofs of Theorems

Appendix A Proofs of Theorems

1.1 A.1 Proof of Lemma 1

Applying the change of variables \(\upsilon _i = \zeta _i - f^{(i)}(t)\), \(i=0,1,\ldots ,n\) to the system (30), it follows that

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{\upsilon }}_0 = -\lambda _0|\upsilon _0|^{n/(n+1)}{\text {sgn}}\left( \upsilon _0\right) - \mu _0\upsilon _0 + \upsilon _1 \\ \vdots \\ {\dot{\upsilon }}_i = -\lambda _i|\upsilon _i - \dot{\upsilon }_{i-1}|^{(n-i)/(n-i+1)}{\text {sgn}}\left( \upsilon _i - \dot{\upsilon }_{i-1}\right) - \\ + \mu _i(\upsilon _i - \dot{\upsilon }_{i-1}) + \upsilon _{i+1} \\ \vdots \\ {\dot{\upsilon }}_n = -\lambda _n{\text {sgn}}\left( \upsilon _{n} - \dot{\upsilon }_{n-1}\right) - \mu _n(\upsilon _{n} - \dot{\upsilon }_{n-1}) - f^{(n+1)} \end{array} \right. \end{aligned}$$

Considering that \(x = |x|{\text {sgn}}\left( x\right) \) and \({\text {sgn}}\left( \upsilon _i - \dot{\upsilon }_{i-1}\right) = {\text {sgn}}\left( \upsilon _{i-1} - \dot{\upsilon }_{i-2}\right) \) for \(i=2,\ldots ,n\), and thus \({\text {sgn}}\left( \upsilon _i - \dot{\upsilon }_{i-1}\right) = {\text {sgn}}\left( \upsilon _0\right) \), for \(i=1,2,\ldots ,n\), the system can be rewritten as

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{\upsilon }}_0 = -\left[ \lambda _0|\upsilon _0|^{n/(n+1)} + \mu _0|\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) + \upsilon _1 \\ \vdots \\ {\dot{\upsilon }}_i = -\left[ \lambda _i|\upsilon _i - \dot{\upsilon }_{i-1}|^{\frac{(n-i)}{(n-i+1)}} + \mu _i|\upsilon _i - \dot{\upsilon }_{i-1}|\right] {\text {sgn}}\left( \upsilon _0\right) + \\ + \upsilon _{i+1}\\ \vdots \\ {\dot{\upsilon }}_n = -\left[ \lambda _n + \mu _n|\upsilon _{n} - \dot{\upsilon }_{n-1}|\right] {\text {sgn}}\left( \upsilon _0\right) - f^{(n+1)} \end{array} \right. \end{aligned}$$

It follows by mathematical induction that the non-recursive form of the system is given by

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{\upsilon }}_0 = -\left[ \phi _0(|\upsilon _0|) + \psi _0 |\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) + \upsilon _1 \\ \vdots \\ {\dot{\upsilon }}_i = -\left[ \phi _i(|\upsilon _0|) + \psi _i |\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) + \upsilon _{i+1}\\ \vdots \\ {\dot{\upsilon }}_n = -\left[ \phi _n(|\upsilon _0|) + \psi _n |\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) - f^{(n+1)} \end{array} \right. \end{aligned}$$
(43)

where

$$\begin{aligned} \left\{ \begin{array}{l} \phi _0 = \lambda _0|\upsilon _0|^{n/(n+1)}, \\ \psi _0 = \mu _0 \\ \phi _i = \lambda _i(\phi _{i-1} + \psi _{i-1}|\upsilon _0|)^{(n-i)/(n-i+1)} + \mu _i \phi _{i-1}, \\ \psi _i = \mu _i \psi _{i-1}, \quad i=1,2,\ldots ,n \end{array} \right. \end{aligned}$$

Note that \(\psi _i\) is constant, and \(\phi _i(|\upsilon _0|)\) obeys the following conditions

$$\begin{aligned} \left\{ \begin{array}{ll} \phi _i(|\upsilon _0|) \le \kappa _1^{[i]} &{} \text {se } |\upsilon _0| \le 1 \\ \displaystyle \frac{\phi _i(|\upsilon _0|)}{|\upsilon _0|} \le \kappa _2^{[i]} &{} \text {se } |\upsilon _0| > 1 \end{array} \right. \end{aligned}$$

for \(i=0,1,\ldots ,n\) and some positive constants \(\kappa _1^{[i]}\) and \(\kappa _2^{[i]}\). The first inequality follows from the fact that \(\phi _i\) is bounded, for \(|\upsilon _0| \le 1\), if \(\phi _{i-1}\) is also bounded. Since \(\phi _0\) is bounded under these conditions, then the first inequality follows by mathematical induction. The second inequality can be demonstrated considering that

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {\frac{\phi _0}{|\upsilon _0|} = \lambda _0\frac{1}{|\upsilon _0|^{\frac{1}{n+1}}}} \\ \displaystyle {\frac{\phi _i}{|\upsilon _0|} = \frac{\lambda _i}{|\upsilon _0|^{\frac{1}{n-i+1}}}\left( \frac{\phi _{i-1}}{|\upsilon _0|} + \psi _{i-1}\right) ^{\frac{n-i}{n-i+1}} + \mu _i \frac{\phi _{i-1}}{|\upsilon _0|}}, \\ \qquad i=1,2,\ldots ,n \end{array} \right. \end{aligned}$$

and the fact that, for \(|\upsilon _0| > 1\), \(\frac{\phi _i}{|\upsilon _0|}\) is bounded if \(\frac{\phi _{i-1}}{|\upsilon _0|}\) is also bounded. Since \(\frac{\phi _0}{|\upsilon _0|}\) is bounded under these conditions, then the second inequality follows by mathematical induction.

The equations \({\dot{\upsilon }}_i = -\left[ \phi _i(|\upsilon _0|) + \psi _i |\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) + \upsilon _{i+1}\), \(i=0,1,\ldots ,n-1\) can be rewritten as

$$\begin{aligned} \dot{\upsilon }_i = -a_i(\upsilon _0)\upsilon _0 - b_i(\upsilon _0) + \upsilon _{i+1} \end{aligned}$$

where

$$\begin{aligned} a_i(\upsilon _0)&= \left\{ \begin{array}{ll} \psi _i, &{} |\upsilon _0| \le 1 \\ \psi _i + \displaystyle \frac{\phi _i(|\upsilon _0|)}{|\upsilon _0|}, &{} |\upsilon _0|> 1 \end{array} \right. , \\ b_i(\upsilon _0)&= \left\{ \begin{array}{ll} \phi _i(|\upsilon _0|){\text {sgn}}\left( \upsilon _0\right) , &{} |\upsilon _0| \le 1 \\ 0, &{} |\upsilon _0| > 1 \\ \end{array} \right. \end{aligned}$$

The equation \({\dot{\upsilon }}_n = -\left[ \phi _n(|\upsilon _0|) + \psi _n |\upsilon _0|\right] {\text {sgn}}\left( \upsilon _0\right) - f^{(n+1)}(t)\) can be rewritten as

$$\begin{aligned} \dot{\upsilon }_n = -a_n(\upsilon _0)\upsilon _0 - b_n(\upsilon _0) \end{aligned}$$

where

$$\begin{aligned} a_n(\upsilon _0)&= \left\{ \begin{array}{ll} \psi _n, &{} |\upsilon _0| \le 1 \\ \psi _n + \displaystyle \frac{\phi _n(|\upsilon _0|)}{|\upsilon _0|}, &{} |\upsilon _0|> 1 \end{array} \right. , \\ b_n(\upsilon _0)&= \left\{ \begin{array}{ll} \phi _n(|\upsilon _0|){\text {sgn}}\left( \upsilon _0\right) + f^{(n+1)}(t), &{} |\upsilon _0| \le 1 \\ f^{(n+1)}(t), &{} |\upsilon _0| > 1 \\ \end{array} \right. \end{aligned}$$

Note that, once \(\left| f^{(n+1)}(t) \right| \le K_{n+1} \,\, \forall t\), then \(\left| a_i(\upsilon _0) \right| \le K_{a_i}\) and \(\left| b_i(\upsilon _0) \right| \le K_{b_i}\), for \(i=0,1,\ldots ,n\) and some positive constants \(K_{a_i}\) and \(K_{b_i}\). Defining the complete state vector as \(\varUpsilon = \left[ \begin{array}{cccc} \upsilon _0&\upsilon _1&\ldots&\upsilon _n \end{array}\right] ^T\) , the system (43) can be rewritten as

$$\begin{aligned} \dot{\varUpsilon } = A(\varUpsilon )\varUpsilon + b(\varUpsilon ) \end{aligned}$$

where

$$\begin{aligned} A(\varUpsilon ) = \left[ \begin{array}{ccccc} -a_0(\upsilon _0) &{} 1 &{} 0 &{} \ldots &{} 0 \\ -a_1(\upsilon _0) &{} 0 &{} 1 &{} \ldots &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ -a_{n-1}(\upsilon _0) &{} 0 &{} 0 &{} \ldots &{} 1 \\ -a_n(\upsilon _0) &{} 0 &{} 0 &{} \ldots &{} 0 \\ \end{array} \right] \ \ b(\varUpsilon ) = \left[ \begin{array}{c} -b_0(\upsilon _0)\\ -b_1(\upsilon _0)\\ \vdots \\ -b_{n-1}(\upsilon _0)\\ -b_n(\upsilon _0)\\ \end{array} \right] \end{aligned}$$

and it follows that \(\Vert b(\varUpsilon ) \Vert \le c_1\) and \(\Vert A(\varUpsilon ) \Vert \le c_2\) for some positive constants \(c_1\) and \(c_2\).

Consider the function

$$\begin{aligned} V(\varUpsilon (t)) = \varUpsilon ^T(t) \varUpsilon (t) \end{aligned}$$

It can be verified that

$$\begin{aligned} \dot{V}(\varUpsilon ) \le 2c_2 V(\varUpsilon ) + 2c_1 \sqrt{V(\varUpsilon )} \end{aligned}$$

Consider the comparison equation \(\dot{V_c}(\varUpsilon ) = 2c_2 V_c(\varUpsilon ) + 2c_1 \sqrt{V_c(\varUpsilon )}\). If \(V_c(0) = V(0)\), then \(V(t) \le V_c(t), \forall t \ge 0\). Introducing the new variable \(\chi ^2 = V_c\), it follows that

$$\begin{aligned} \chi {\dot{\chi }} = c_2 \chi ^2 + c_1 \chi \end{aligned}$$

Considering \(\chi \ne 0\), then \(\frac{\mathrm{d}\chi }{\mathrm{d}t} = c_2 \chi + c_1 \). In this case, it can be shown that

$$\begin{aligned} \frac{1}{c_2}\ln {\left( \frac{2c_2 \sqrt{V_c(t)} + 2c_1}{2c_2 \sqrt{V_c(0)} + 2c_1}\right) } = t \end{aligned}$$

and

$$\begin{aligned} V(t) \le \left[ \left( \sqrt{V(0)} + \frac{c_1}{c_2} \right) e^{c_2t} - \frac{c_1}{c_2} \right] ^2 \end{aligned}$$

Then the function V(t) cannot escape in finite time for any finite constant \(K_{n+1}\), and thus \(\upsilon \in {\mathcal {L}}_{\infty e}\). Furthermore, since the signals \(f^{(i)}(t)\), \(i=0,1,\ldots ,n,\) are bounded, then one can conclude that the state \(\zeta \) cannot escape in finite time. \(\square \)

1.2 A.2 Proof of Theorem 2

The estimate given by the MIMO lead filter and the MIMO RED could be related to \(\xi _y\) in (19) as follows:

$$\begin{aligned} {\hat{\xi }}_{l} = \xi _y + \varepsilon _{l}, \qquad {\hat{\xi }}_{r} = \xi _y + \varepsilon _{r}\,, \end{aligned}$$
(44)

where \(\varepsilon _{l}\) and \(\varepsilon _{r}\) are estimation errors. From (44), equation (38) can be rewritten as

$$\begin{aligned} {\hat{\xi }}_{g}&= \xi _y + \varepsilon _g, \quad \varepsilon _g&= \alpha ({\tilde{\nu }}_{rl}) \varepsilon _{l} + \left[ 1 - \alpha ({\tilde{\nu }}_{rl}) \right] \varepsilon _{r}\,. \end{aligned}$$
(45)

From (39), the estimation error \(\varepsilon _g(t)\) can be rewritten as:

$$\begin{aligned} \varepsilon _g = \varepsilon _{l} + \beta _{\alpha }({\tilde{\nu }}_{rl}(t))\,, \end{aligned}$$
(46)

where by design \(\beta _{\alpha }({\tilde{\nu }}_{rl}(t))\) is uniformly bounded by

$$\begin{aligned} \left| \! \left| \beta _{\alpha }({\tilde{\nu }}_{rl}(t)) \right| \! \right| < \varepsilon _M, \ \text {with} \ \varepsilon _M = \tau K_R\,. \end{aligned}$$

Substituting (45),(46) into (40)–(42), it can be seen that GRED adaptive law is equivalent to lead adaptive law (26)–(28) with an output disturbance \(\left| \! \left| \beta _{\alpha }({\tilde{\nu }}_{rl}(t)) \right| \! \right| \le \varepsilon _M\).

Therefore, Theorem 1 holds if all signals of the GRED-BMRAC system belong to \(L_{\infty e}\). In order to demonstrate that the condition is true, we only have to show that all signals in the MIMO RED system are \(L_{\infty e}\). This property can be proved by contradiction. Suppose that the maximal interval of finiteness of the signals in the MIMO RED is \([0,T_M)\). During this interval, all conditions of Theorem 1 hold, and thus, all signals of the remaining subsystems of the GRED-BMRAC are bounded by a constant, and in particular, \(\left| y_j^{(i)}(t)\right| , i=0,\dots ,\rho _j, \ j = 1,\dots ,M \), from Corollary 2. This leads to a contradiction with Lemma 1, whereby the signals in the MIMO RED could not diverge unboundedly as \(t \rightarrow T_M\). As a consequence of the continuation theorem for differential equations (in Filippov’s theory), \(T_M\) must be \(\infty \), which means that all signals are defined \(\forall t \ge 0\). Thus, Theorem 1 is valid for the GRED-MRAC system and the closed-loop error system with state z is GEpS with respect to a residual set.

Now, we will analyze the ultimate convergence of the GRED-BMRAC. According to Corollary 1, for sufficiently small \(\tau \) and sufficiently large \(\gamma \) the error state z is steered to an invariant compact set \(D_R := \{ z : \left| z(t)\right| < R \}\) in some finite time \(T_1 \ge 0\). Consider the following Lyapunov candidate

$$\begin{aligned} V = x_\varepsilon ^T P_2 x_\varepsilon \end{aligned}$$
(47)

whose time derivative is

$$\begin{aligned} \dot{V}= & {} - \frac{1}{\tau } x_{\varepsilon }^T Q_2 x_{\varepsilon } + 2x_{\varepsilon }^T P_2 B_{\varepsilon } \dot{\xi _y} \end{aligned}$$

following the previous steps

$$\begin{aligned} \dot{V}&{=}&- \frac{1}{\tau } x_{\varepsilon }^T Q_2 x_{\varepsilon } {+} 2x_{\varepsilon }^T Q_3 x_e + 2x_\varepsilon ^T Q_4 X_m {+} 2x_\varepsilon ^T Q_5 r \end{aligned}$$
(48)
$$\begin{aligned}&\quad \dot{V} \le - \frac{k_2}{\tau } \left| \! \left| x_{\varepsilon } \right| \! \right| ^2 + k_3 \left| \! \left| x_\varepsilon \right| \! \right| \left| \! \left| x_e \right| \! \right| + k_4 \left| \! \left| x_\varepsilon \right| \! \right| \end{aligned}$$
(49)

Within \(D_R\), \(x_e\) can be upper bounded by \(\left| \! \left| x_e \right| \! \right| \le R\) such that

$$\begin{aligned} \dot{V} \le - \frac{k_2}{\tau } \left| \! \left| x_{\varepsilon } \right| \! \right| ^2 + \tau k_5 \end{aligned}$$
(50)

Thus, it is possible to show that

$$\begin{aligned} \left| \! \left| x_\varepsilon (t) \right| \! \right| \le c_\varepsilon e^{-a(t - t_0)}\left| \! \left| x_\varepsilon (t_0) \right| \! \right| + \tau k_6 \end{aligned}$$
(51)

Since \(\left| \! \left| \varepsilon _l \right| \! \right| \le \left| \! \left| x_\varepsilon \right| \! \right| \), it is straightforward to show that for some finite \(T_2 \ge T_1\), \(\left| \! \left| \varepsilon _l \right| \! \right| \le {{\bar{\varepsilon }}}_l\), where \({{\bar{\varepsilon }}}_l = \tau K_{l}\).

Since the MIMO RED is time-invariant, its initial conditions can be considered to be at \(t=T_1\). From Lemma 1, the initial conditions are finite. If the parameters \(\lambda _i^j\) are adjusted properly, then from Levant (2009) the estimation error \(\varepsilon _{r}(t)\) converges to zero in some finite time \(T_3 > T_1\).

Since \(K_R\) is chosen such that \(\varepsilon _M > {\bar{\varepsilon }}_{l} + \varDelta \) and from (39), it follows that after some finite time \({{\bar{T}}} = \max \{ T_2, T_3\}\) the estimation of \(\sigma \) becomes exact and being made exclusively by the MIMO RED (\(\alpha ({\tilde{\nu }}_{rl}) = 0\)), which implies that \(\varepsilon _g(t) = 0, \forall t \ge {\bar{T}}\).

In this case, the overall error system can be described by

$$\begin{aligned} \dot{x}_e = A_c {x_e} + B_c K_p [u-u^*] \, , \quad {\bar{e}}_L = {\bar{L}} {\bar{H}} {x_e}\,, \end{aligned}$$
(52)

since this system has uniform relative degree one we can apply the result obtained in Yanque et al. (2012). Thus, it is possible to conclude that \(e(t) \rightarrow 0 \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistel, A., Vidal, P.V.N.M., Nunes, E.V.L. et al. Multivariable Binary MRAC with Guaranteed Transient Performance Using Non-homogeneous Robust Exact Differentiators. J Control Autom Electr Syst 32, 378–389 (2021). https://doi.org/10.1007/s40313-020-00680-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00680-y

Keywords

Navigation