Skip to main content
Log in

Robust stability and stabilization studies for uncertain switched systems based on vector norms approach

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problems of robust stability and stabilization via a state feedback controller for both continuous and discrete-time switched linear systems with polytopic uncertainties. These considered systems are represented in the state form. Then, a transformation under the arrow form is performed. Thus, based on the construction of a common Lyapunov function associated with the application of the Kotelyanski lemma, the \(M\)—matrix proprieties and the aggregation techniques, new sufficient conditions for robust stability and stabilization under arbitrary switching laws are established. It should be pointed out that the obtained results are explicit, easy to apply and formulated in terms of the polytopic uncertainty parameters. In addition, this proposed method allows us to avoid the search of a common Lyapunov function which is a difficult matter. For illustration, a DC motor model with separate excitation under variable mechanical loads is used to show the effectiveness and the potential of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morse AS (1997) Control using logic-based switching. Springer, London

    Book  MATH  Google Scholar 

  2. Varaiya P (1993) Smart cars on smart roads: problems of control. IEEE Trans Autom Control 38(2):195–207

    Article  MathSciNet  Google Scholar 

  3. Wong WS, Brockett RW (1997) Systems with finite communication bandwidth constraints-part I: state 4 estimation problems. IEEE Trans Autom Control 42(9):1294–1299

    Article  MathSciNet  MATH  Google Scholar 

  4. El-Farra NH, Christofides PD (2004) Coordinating feedback and switching for control of spatially distributed processes. Comput Chem Eng 28(1):111–128

    Article  MathSciNet  Google Scholar 

  5. Shorten R, Wirth F, Mason O, Wulf K, King C (2007) Stability criteria for switched and hybrid systems. SIAM Rev 49(4):545–592

    Article  MathSciNet  MATH  Google Scholar 

  6. Minh VT (2013) Stability for switched dynamic hybrid systems. Math Comput Model 57(1):78–83

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhai G, Lin H, Antsaklis PJ (2003) Quadratic stabilizability of switched linear systems with polytopic uncertainties. Int J Control 76(7):747–753

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin H, Antsaklis PJ (2007) Switching stabilizability for continuous-time uncertain switched linear systems. IEEE Trans Autom Control 52(4):633–646

    Article  MathSciNet  Google Scholar 

  9. Zhanga X, Gaoc Y, Xia Z (2014) Stabilization of switched systems with polytopic uncertainties via composite quadratic functions. Nonlinear Anal 11(1):71–83

    Google Scholar 

  10. Sun Z, Ge SS (2005) Switched linear systems control and design. Springer, London

    Book  MATH  Google Scholar 

  11. Otsuka N, Soga T (2009) Necessary and sufficient conditions on quadratic stablizability for polytopic uncertain continuous-time switched linear systems. In: International conference on control & automation. Christchurch, New Zealand

  12. Otsuka N, Soga T (2010) Quadratic stabilizability for polytopic uncertain continuous-time switched linear systems composed of two subsystems. Int J Control 3(1):35–42

  13. Dasgupta S, Chockalingam G, Anderson BDO, Fu M (1994) Lyapunov functions for uncertain systems with applications to the stability to time varying systems. IEEE Trans Autom Control 41(2):93–106

    MathSciNet  MATH  Google Scholar 

  14. Daafouz J, Bernussou J (2001) Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst Control Lett 43(5):355–359

    Article  MathSciNet  MATH  Google Scholar 

  15. Liberzon D, Morse AS (1999) Basic problems in stability and design of switched systems. IEEE Control Syst Mag 19:59–70

    Article  Google Scholar 

  16. Branicky MS (1998) Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Autom Control 43(4):475–482

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishii H, Francis BA (2002) Stabilizing a linear system by switching control with dwell time. IEEE Trans Autom Control 47(12):1962–1973

    Article  MathSciNet  Google Scholar 

  18. Hespanha J P, Morse AS (1999) Stability of switched systems with average dwell-time. In: IEEE conference on decision and control. Arizona, USA

  19. Xie D, Xu G (2005) Computation of performance robustness bounds for control systems with parameter uncertainties: an LMI approach. Control Theory Appl 152(6):675–682

    Article  MathSciNet  Google Scholar 

  20. Kotelyanski DM (1952) Some properties of matrices with positive elements. Matematicheskii Sbornik 31(73):497–505

    Google Scholar 

  21. Robert F (1966) Recherche d’une M-matrice parmi les minorantes d’un opérateur liéaire. Numer Math 9:188–199

    Article  Google Scholar 

  22. Gantmacher FR (1966) Théorie des matrices T.1 et 2, Dunod, Paris, France

  23. Kermani M, Sakly A, M’sahli F (2012) Stability analysis and stabilization of switched linear systems based on vector norms approach. In: 2nd international conference on communications, computing and control applications. Marseille, France

  24. Kermani M, Sakly A, M’sahli F (2012) A new stability analysis and stabilization of discrete-time switched linear systems using vector norms approach. World Acad Sci Eng Technol 71(11):1302–1307

    Google Scholar 

  25. Kermani M, Sakly A, M’sahli F (2013) A new stability analysis and stabilization of uncertain switched linear systems based on vector norms approach. In: International multi-conference on systems, signals & devices, Hammamet, Tunisia

  26. Elmadssia S, Saadaoui K, Benrejeb M (2013) New delay-dependent stability conditions for linear systems with delay. Syst Sci Control Eng 1(1):37–41

    Google Scholar 

  27. Jaballi A, Kermani M, Sakly A (2013) A new stability analysis for discrete-time switched time-delay systems. In: Special issue-international conference on control, engineering & information technology (CEIT’13). Proceedings (PET) 1(1): 200–204

  28. Kermani M, Sakly A (2014) New delay-dependent stability conditions for switched time-delay systems. In: International conference on control, engineering & information technology (CEIT’14). Monastir, Tunisia

  29. Kermani M, Sakly A (2014) Stability analysis for a class of switched nonlinear time-delay systems. Syst Sci Control Eng 2(1):80–89

    Article  Google Scholar 

  30. Kermani M, Jaballi A, Sakly A (2014) A new stability analysis for discrete-time switched time-delay systems. Int J Control Energy Electr Eng 1(1):23–30

    Google Scholar 

  31. Benrejeb M, Sakly A, Ben Othman K, Borne P (2008) Choice of conjunctive operator of TSK fuzzy systems and stability domain study. Math Comput Simulat 76(5):410–421

  32. Benrejeb M, Soudani D, Sakly A, Borne P (2006) New discrete Tanaka Sugeno Kang fuzzy systems characterization and stability domain. Int J Comput Commun Control 1(4):9–19

    Article  Google Scholar 

  33. Borne P, Richard JP, Radhy NE (1993) Stabilité stabilisation régulation: approche par les normes vectorielles Systèmes non linéaires”. tome 2: stabilité-stabilisation, coordonné par A.J. Fossard et D. Normand-Cyrot, Responsable du tome: P. Borne. Editions Masson. Paris

  34. Borne P, Dambrine M, perruquetti W, Richard JP (2003) Vector Lyapunov functions: Nonlinear; time-varying; ordinary and functional diferantial equations; Advances in stability theory, stability and control: theory methods and applications. Taylors & Francis, London

    Google Scholar 

  35. Borne P, Vanheeghe P, Duflos E (2007) Automatisation des processus dans l’espace d’état. Ed. Technip. Paris

  36. Benrejeb M, Borne P, Laurent F (1982) Sur une application de la représentation en flèche à l’analyse des processus”. Rairo-Autom-Syst 16:133–146

    MATH  Google Scholar 

  37. Borne P (1987) Nonlinear system stability vector norm approach. Syst Control Encycl t.5:3402–3406

    Google Scholar 

  38. Borne p, Gentina JC, Laurent F (1972) Sur la stabilité des systèmes échantillonnés non liné aires. REV.Fr.auto inf Rech.oper 2:96–105

    MathSciNet  Google Scholar 

  39. Borne P, Benrejeb M (2008) On the representation and the stability study of large scale systems. Int J Comput Commun Control 3(5):55–66

    Google Scholar 

Download references

Acknowledgments

Although the content of the paper is basically the outcome of the authors’ personal effort, they wish to thank the reviewers for their valuable comments and suggestions which have greatly improved the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwen Kermani.

Appendices

Appendix 1

1.1 Borne–Gentina stability study approach

Let us consider the linear process described in state space by:\(\dot{{x}}=Ax\), where \(A\) is an \(n\times n\) matrix. Hurwitz conditions applied to characteristic polynomial parameters of \(A,\,A=\left\{ {a_{i,j} } \right\} \), leads to the asymptotic stability domain in parameters space \(a_{i,j} .\) Kotelyanski elaborates a particular lemma, well adapted for stability study when off diagonal elements of matrix \(A\) are non-negative.

1.2 Borne–Gentina practical stability criterion [20]:

Let consider the nonlinear continuous process described in state space by: \(\dot{{x}}=A(.)x\); \(A(.)\) is an \(n\times n\) matrix, \(A(.)=\left\{ {a_{i,j} } \right\} .\) If the overvaluing matrix \(M(A)\) has its non-constant elements isolated in only one row, the verification of the Kotelyanski condition enables to conclude to the stability of the initial system.

As an example, if the non-constant elements are isolated in only one row of \(A\), Kotelyanski lemma applied to the overvaluing matrix obtained by the use of the \(n\) regular vector norm \(p(x)\) with \(x=\left[ {x_{1} ,x_{2} ,\ldots ,x_{n} } \right] ^{T}\), such that:

\(p(x)=\left[ {\left| {x_{1} } \right| ,\left| {x_{2} } \right| ,\ldots ,\left| {x_{n} } \right| } \right] ^{T},\) leads to the following stability conditions of initial system:

$$\begin{aligned}&\begin{array}{l} a_{1,1} <0, \\ \left| {{\begin{array}{cc} {a_{1,1} } &{} \quad {\left| {a_{1,2} } \right| } \\ {\left| {a_{2,1} } \right| } &{} \quad {a_{2,2} } \\ \end{array} }} \right| >0, \\ \ldots , \\ \end{array}\\&\quad \quad \left( {-1} \right) ^{n}\left| {{\begin{array}{cccc} {a_{1,1} } &{} \quad {\left| {a_{1,2} } \right| } &{} &{} \quad {\left| {a_{1,n} } \right| } \\ {\left| {a_{2,1} } \right| } &{} {a_{2,2} } &{} &{} \quad {\left| {a_{2,n} } \right| } \\ \vdots &{} \vdots &{} \quad {\ldots } &{} \quad \vdots \\ {\left| {a_{n,1} (.)} \right| } &{} \quad {\left| {a_{n,2} (.)} \right| } &{} &{} \quad {a_{n,n} (.)} \\ \end{array} }} \right| >0 \end{aligned}$$

The Borne–Gentina practical criterion applied to continuous systems generalizes the Kotelyanski lemma for nonlinear systems and defines large classes of systems.

Appendix 2

1.1 Proof of Theorem 4

The matrix \(M_{C} \) has its off-diagonal elements positive and the ones non constant are isolated in the last row. Thus, by referring to results obtained in [39], the conditions of Theorem 4 can be deduced from the Kotelyanski conditions [20]. These conditions require having the principal minors of alternated signs, the \({\upalpha }_{j} \) are chosen all negative:

$$\begin{aligned} \begin{array}{l} {\upalpha }_{1} <0,\, \\ {\upalpha }_{1} {\upalpha }_{2} >0, \\ \,\ldots ,\, \\ \left( {-1} \right) ^{n-1}\prod \limits _{j=1}^{n-1} {{\upalpha }_{j} } >0,\, \\ \left( {-1} \right) ^{n}\det \left( {M_{C} } \right) \,>0 \\ \end{array} \end{aligned}$$

The \(n-1\) first conditions are checked because the \({\upalpha }_{j} \)are negative, however the last condition yields to: \(\left( {-1} \right) ^{n}\det \,\left( {M_{C} } \right) =\left( {-1} \right) ^{n}\left| {{\begin{array}{ccccc} {{\upalpha }_{1} } &{} \quad 0 &{} \quad \cdots &{} \quad 0 &{} \quad {\left| {{\upbeta }_{1} } \right| } \\ 0 &{} \quad \ddots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots \\ \vdots &{} \quad \ddots &{} \quad \ddots &{} \quad 0 &{} \quad \vdots \\ 0 &{} \quad \cdots &{} \quad 0 &{} \quad {{\upalpha }_{n-1} } &{} \quad {\left| {{\upbeta }_{n-1} } \right| } \\ {\overline{{t}}^{1}} &{} \quad \cdots &{} \quad \cdots &{} \quad {\overline{{t}}^{n-1}} &{} \quad {\overline{{t}}^{n}} \\ \end{array} }} \right| \)

$$\begin{aligned} =\left( {-1} \right) ^{n}\left[ {\overline{{t}}^{n}\prod \limits _{q=1}^{n-1} {{\upalpha }_{q} } -\sum \limits _{\mathrm{j=1}}^{n-1} {\left( {\overline{{t}}^{j}\left| {{\upbeta }_{j} } \right| \prod \limits _{\begin{array}{l} j=1 \\ j\ne q \\ \end{array}}^{n-1} {{\upalpha }_{j} } } \right) } } \right] >0 \end{aligned}$$

Then the theorem is obtained by dividing this condition by \(\left( {\left( {-1} \right) ^{n-1}\prod \nolimits _{q=1}^{n-1} {{\upalpha }_{q} } } \right) \) such that: \(-\overline{{t}}^{n}+\sum \nolimits _{j=1}^{n-1} {\overline{{t}}^{j}\left| {{\upbeta } _{j} } \right| {\upalpha }_{j}^{-1}>0} \)

Appendix 3

1.1 Proof of corollary 1

If there exist It is clear that, for\(j=1,\ldots ,n-1\), such that:

\({\upbeta }_{j} \sum \nolimits _{l=1}^{N_{l} } {{\upmu }_{il} } \left( t \right) P_{il} \left( {\upalpha } \right) =-{\upbeta }_{j} \sum \nolimits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma }_{il}^{j} <0 \) and the comparison system can be chosen identically to [39]:

$$\begin{aligned} M=\left[ {{\begin{array}{ccccc} {{\upalpha }_{1} } &{} \quad 0 &{} \quad \cdots &{} \quad 0 &{} \quad {{\upbeta }_{1} }\\ 0 &{} \quad \ddots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots \\ \vdots &{} \quad \ddots &{} \quad \ddots &{} \quad 0 &{} \quad \vdots \\ 0 &{} \quad \cdots &{} \quad 0 &{} {{\upalpha }_{n-1} } &{} \quad {{\upbeta } _{n-1} } \\ {\mathop {\max }\limits _{i\in I} \left( {\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma }_{il}^{1} } \right) } &{} \quad \cdots &{} \quad \cdots &{} \quad {\mathop {\max }\limits _{i\in I} \left( {\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma }_{il}^{n-1} } \right) } &{} \quad {\mathop {\max }\limits _{i\in I} \left( {\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma }_{il}^{n} } \right) } \\ \end{array} }} \right] \end{aligned}$$

the \(n\)th \(M\) principal minor \(\Delta _{_{n} } =\sum \nolimits _{l=1}^{N_{l} } {{\upmu }_{il} } \left( t \right) P_{il} \left( 0 \right) >0\,i=1,\ldots ,N\) and \(l=1,2,\ldots ,N_{l} \)

$$\begin{aligned}&-\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma }_{il}^{n} (.)+\sum \limits _{j=1}^{n-1} {\left( {{\upalpha }_{j} } \right) ^{-1}\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} \left( t \right) } {\upgamma } _{il}^{j} (.)} {\upbeta }_{j} \\&\quad =\prod \limits _{j=1}^{n-1} {\left( {{\upalpha }_{j} } \right) ^{-1}\sum \limits _{l=1}^{N_{l} } {{\upmu }_{il} } \left( t \right) P_{il} \left( 0 \right) } \end{aligned}$$

Appendix 4

1.1 Proof of Theorem 8

The matrix \(M_{D} \) with all elements positive and the ones non constant are isolated in the last row. Thus, the conditions of Theorem 8 can be deduced from the Kotelyanski conditions in the discrete case applied to matrix \(\left( {I_{n} -M_{D} } \right) \) [32].

The \(n-1\) first conditions are checked because \(\left| {{\upalpha }_{j} } \right| \in ] {0,1} ]j=1,\ldots ,n-1\), however the last condition yields to:

$$\begin{aligned}&\det \,\left( {I_{n} -M_{D} } \right) =\left| {{\begin{array}{ccccc} {1-\left| {{\upalpha }_{1} } \right| } &{} \quad 0 &{} \quad \cdots &{} \quad 0 &{} \quad {-\left| {{\upbeta }_{1} } \right| } \\ 0 &{} \quad \ddots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots \\ \vdots &{} \quad \ddots &{} \quad \ddots &{} \quad 0 &{} \quad \vdots \\ 0 &{} \quad \cdots &{} \quad 0 &{} \quad {1-\left| {{\upalpha }_{n-1} } \right| } &{} \quad {-\left| {{\upbeta }_{n-1} } \right| } \\ {-\overline{{t}}_{D}^{1}} &{} \quad \cdots &{} \quad \cdots &{} \quad {-\overline{{t}}_{D}^{n-1}} &{} \quad {1-\overline{{t}}_{D}^{n}} \\ \end{array} }} \right| >0\\{}&=\left[ {\left( {1-\overline{{t}}_{D}^{n}} \right) \prod \limits _{q=1}^{n-1} {\left( {1-\left| {{\upalpha }_{q} } \right| } \right) } -\sum \limits _{j=1}^{n-1} {\left( {\overline{{t}}_{D}^{j}\left| {{\upbeta } _{j} } \right| \mathop {\mathop {\prod }\limits _{j=1}}\limits _j\ne q ^{n-1} {\left( {1-\left| {{\upalpha }_{j} } \right| } \right) } } \right) } } \right] >0, \end{aligned}$$

Then the Theorem 8 is obtained by dividing this condition by \(\bigg ( {\prod \nolimits _{q=1}^{n\!-\!1} {\bigg ( {1\!-\!\bigg | {{\upalpha } _{q} } \bigg |} \bigg )} } \bigg )\) such that:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermani, M., Sakly, A. Robust stability and stabilization studies for uncertain switched systems based on vector norms approach. Int. J. Dynam. Control 4, 76–91 (2016). https://doi.org/10.1007/s40435-014-0119-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-014-0119-0

Keywords

Navigation