Skip to main content
Log in

The solution of state space linear fractional system of commensurate order with complex eigenvalues using regular exponential and trigonometric functions

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In a previous work, we have derived the general solution of the state space linear fractional system of commensurate order for real simple and multiple eigenvalues of the state space matrix. The obtained solutions of the homogeneous and non-homogeneous cases have been expressed as a linear combination of introduced fundamental functions. In this paper, the above work has been extended to solve the state space linear fractional system of commensurate order for complex eigenvalues of the state space matrix. First, suitable fundamental functions corresponding to the different types of complex eigenvalues of the state space matrix are introduced. Then, the derived formulations of the resolution approach are presented for the homogeneous and the non-homogeneous cases. The solutions are expressed in terms of a linear combination of the proposed fundamental functions which are in the form of exponentials, sine, cosine, damped sine and damped cosine functions depending on the commensurate fractional order. The results are validated by solving an illustrative example to demonstrate the effectiveness of the proposed analytical tool for the solution of the state space linear fractional system of commensurate order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hilfer R (ed) (2000) Applications of calculus in physics. World Scientific, Singapore

    MATH  Google Scholar 

  2. Oustaloup A, Cois O, Le lay L (2005) Représentation et identification par modèle non entier. Hermès-Lavoisier, Paris

    MATH  Google Scholar 

  3. Magin RL (2006) Fractional calculus in bioengineering. Begell House, Redding

    Google Scholar 

  4. Sabatier J et al (2007) Advances in fractional calculus: theoretical development and applications in physics and engineering. Springer, Dordrecht

    Book  MATH  Google Scholar 

  5. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  6. Diethelm K (1997) An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 5:1–6

    MathSciNet  MATH  Google Scholar 

  7. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  8. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  9. Oturanç G, Kurnaz A, Keskin Y (2008) A new analytical approximate method for the solution of fractional differential equations. Int J Comput Math 85(1):131–142

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu Y, Luo Y, Lu Z (2008) Analytical solution of the linear fractional differential equation by Adomian decomposition method. J Comput Appl Math 215(1):220–229

    Article  MathSciNet  MATH  Google Scholar 

  11. Odibat ZM (2010) Analytic study on linear systems of fractional differential equations. Comput Math Appl 59:1171–1183

    Article  MathSciNet  MATH  Google Scholar 

  12. Charef A, Boucherma D (2011) Analytical solution of the linear fractional system of commensurate order. Comput Math Appl 62(12):4415–4428

    Article  MathSciNet  MATH  Google Scholar 

  13. Aoun M, Malti R, Levron F, Oustaloup A (2004) Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dyn 38:117–131

    Article  MATH  Google Scholar 

  14. Kumar P, Agrawal OP (2006) An approximate method for numerical solution of fractional differential equations. Signal Process 86:2602–2610

    Article  MATH  Google Scholar 

  15. Momani S, Odibat Z (2007) Numerical approach to differential equations of fractional order. J Comput Appl Math 207(1):96–110

    Article  MathSciNet  MATH  Google Scholar 

  16. Odibat Z, Momani S (2008) An algorithm for the numerical solution of differential equations of fractional order. J Appl Math Inform 26(1–2):15–27

    MATH  Google Scholar 

  17. Li CP, Tao CX (2009) On the fractional Adams method. Comput Math Appl 58(8):1573–1588

    Article  MathSciNet  MATH  Google Scholar 

  18. Saadatmandia A, Dehghanb M (2010) A new operational matrix for solving fractional order differential equations. Comput Math Appl 59:1326–1336

    Article  MathSciNet  Google Scholar 

  19. Li CP, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230:3352–3368

    Article  MathSciNet  MATH  Google Scholar 

  20. Kailath T (1980) Linear systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  21. Charef A (2006) Modeling and analog realization of the fundamental linear fractional order differential equation. Nonlinear Dyn 46:195–210

    Article  MathSciNet  MATH  Google Scholar 

  22. Charef A (2006) Analogue realization of fractional order integrator, differentiator and fractional \({\rm PI}^{\lambda }{\rm D}^{\mu }\) controller. IEEE Proc Control Theory Appl 153(6):714–720

    Article  Google Scholar 

  23. Boucherma D, Charef A (2011) Approximation d’une fonction fondamentale d’ordre fractionnaire. In: Proceeding de la seconde conférence sur les Systèmes d’Ordre Fractionnaire et leurs Applications, SOFA’11, Tizi-ouzou, Algeria, 24–26 Octobre, 2011

  24. Charef A, Nezzari H (2011) On the fundamental linear fractional order differential equation. Nonlinear Dyn 65(3):335–348

    Article  MATH  Google Scholar 

  25. Nezzari H, Charef A, Boucherma D (2013) Analog circuit implementation of fractional order damped sine and cosine functions. IEEE J Emerg Sel Top Circuits Syst 3(3):386–392

    Article  Google Scholar 

  26. Sabatier J, Merveillaut M, Malti R, Oustaloup A (2010) How to impose physically coherent initial conditions to a fractional system? Commun Nonlinear Sci Numer Simul 15(5):1318–1326

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Charef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucherma, D., Charef, A. & Nezzari, H. The solution of state space linear fractional system of commensurate order with complex eigenvalues using regular exponential and trigonometric functions. Int. J. Dynam. Control 5, 79–94 (2017). https://doi.org/10.1007/s40435-015-0185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0185-y

Keywords

Navigation