Skip to main content
Log in

Routes of periodic motions to chaos in a periodically forced pendulum

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, with varying excitation amplitude, bifurcation trees of periodic motions to chaos in a periodically driven pendulum are obtained through a semi-analytical method. This method is based on the implicit discrete maps obtained from the midpoint scheme of the corresponding differential equation. Using the discrete maps, mapping structures are developed for specific periodic motions, and the corresponding nonlinear algebraic equations of such mapping structures are solved. Further, semi-analytical bifurcation trees of periodic motions to chaos are also obtained, and the corresponding eigenvalue analysis is carried out for the stability and bifurcation of the periodic motions. Finally, numerical illustrations of periodic motions on the bifurcation trees are presented in verification of the analytical prediction. Harmonic amplitude spectra are also presented for demonstrating harmonic effects on the periodic motions. The bifurcation trees of period-1 motions to chaos possess a double spiral structure. The two sets of solutions of period-\(2^{l}\) motions \((l=0,1,2,\ldots )\) to chaos are based on the center around \(2m\pi \) and \((2m-1)\pi (m=1,2,3,\ldots )\) in phase space. Other independent bifurcation trees of period-m motions to chaos are presented. Through this investigation, the motion complexity and nonlinearity of the periodically forced pendulum can be further understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lagrange JL (1788) Mecanique Analytique, vol 2. Edition Albert Balnchard, Paris, 1965

  2. Poincare H (1899) Methodes Nouvelles de la Mecanique Celeste, vol 3. Gauthier-Villars, Paris

  3. van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1(701–710):754–762

    Google Scholar 

  4. Fatou P (1928) Sur le mouvement d’un systeme soumis ‘a des forces a courte periode. Bull Soc Math 56:98–139

    MathSciNet  MATH  Google Scholar 

  5. Krylov NM, Bogolyubov NN (1935) Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Academie des Sciences d’Ukraine, Kiev (in French)

    Google Scholar 

  6. Hayashi C (1964) Nonlinear oscillations in physical systems. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  7. Barkham PGD, Soudack AC (1969) An extension to the method of Krylov and Bogoliubov. Int J Control 10:377–392

    Article  MATH  Google Scholar 

  8. Rand RH, Armbruster D (1987) Perturbation methods, bifurcation theory, and computer algebra. Applied mathematical sciences, vol 65. Springer, New York

    Book  MATH  Google Scholar 

  9. Garcia-Margallo J, Bejarano JD (1987) A generalization of the method of harmonic balance. J Sound Vib 116:591–595

    Article  MathSciNet  MATH  Google Scholar 

  10. Yuste SB, Bejarano JD (1986) Construction of approximate analytical solutions to a new class of non-linear oscillator equations. J Sound Vib 110(2):347–350

    Article  MATH  Google Scholar 

  11. Yuste SB, Bejarano JD (1990) Improvement of a Krylov–Bogoliubov method that uses Jacobi elliptic functions. J Sound Vib 139(1):151–163

    Article  MathSciNet  MATH  Google Scholar 

  12. Coppola VT, Rand RH (1990) Averaging using elliptic functions: approximation of limit cycle. Acta Mech 81:125–142

    Article  MathSciNet  MATH  Google Scholar 

  13. Zaslavsky GM, Chirikov BV (1972) Stochastic instability of nonlinear oscillations. Sov Phys USP 14(5):549–672

    Article  MATH  Google Scholar 

  14. Luo ACJ, Han RPS (2000) The dynamics of stochastic and resonant layers in a periodically driven pendulum. Chaos Solitons Fractals 11:2349–2359

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo ACJ (2012) Continuous dynamical systems. HEP/L&H Scientific, Beijing/Glen Carbon

    MATH  Google Scholar 

  16. Luo ACJ, Huang JZ (2012) Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J Vib Control 18:1661–1871

    Article  MathSciNet  Google Scholar 

  17. Luo ACJ, Huang JZ (2012) Analytical dynamics of period-m flows and chaos in nonlinear systems. Int J Bifurcat Chaos 22 Article No. 1250093

  18. Luo ACJ (2015) Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems. Int J Bifurcat Chaos 25(3): Article No. 1550044

  19. Luo ACJ, Guo Y (2015) A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures: Discontinuity. Nonlinearity Complex 4(2):13–44

    Article  Google Scholar 

  20. Guo Y, Luo ACJ (2015) On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator. Chaos Solitons Fractals 81(2015):378–399

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Luo, A.C.J. Routes of periodic motions to chaos in a periodically forced pendulum. Int. J. Dynam. Control 5, 551–569 (2017). https://doi.org/10.1007/s40435-016-0249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0249-7

Keywords

Navigation