Skip to main content
Log in

Microstructure of Yttria-Doped Ceria as a Function of Oxalate Co-Precipitation Synthesis Conditions

  • Published:
Metallurgical and Materials Transactions E

Abstract

In sodium fast reactors (SFR), dissolved oxygen in sodium can be monitored via potentiometric sensors with an yttria-doped thoria electrolyte. Yttria-doped ceria (YDC) was chosen as a surrogate material to validate the process of such sensors. The material must exhibit high density and a fine grain microstructure to be resistant to the corrosion by liquid sodium and thermal shocks. Thus, the oxalic co-precipitation route was chosen to avoid milling steps that could bring impurity incorporation which is suspected to induce grain boundary corrosion in sodium. The powder and sintered pellets examination show that the synthesis conditions are of primary importance on the process yield, the oxalate powder microstructure and, eventually, on the ceramic density and microstructure. The impurity content was limited by controlling the synthesis, calcination, and sintering steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Brissonneau, J. Nucl. Mater. 423, 67–78 (2012)

    Article  Google Scholar 

  2. R. Thompson, R.G. Taylor, R.C. Asher, C.C.H. Wheatley, and R. Dawson: LIMET Liquid Metal Technology, Richland, 1980

  3. R. Ganesan, S. Vivekanandhan, T. Gnanasekaran, G. Periaswami, R.S. Srinivasa, J. Nucl. Mater. 325, 134–140 (2004)

    Article  Google Scholar 

  4. J. Van Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, Cer. Int. 24, 229–241 (1998)

    Article  Google Scholar 

  5. S.K. Tadokoro, T.C. Porfirio, R. Muccillo, E.N.S. Muccillo, J. Power Sources 130, 15–21 (2004)

    Article  Google Scholar 

  6. N. Hingant, N. Clavier, N. Dacheux, N. Barre, S. Hubert, S. Obbade, F. Taborda, F. Abraham, J. Nucl. Mater. 385, 400–406 (2009)

    Article  Google Scholar 

  7. G. Bryan Balazs and R.S. Glass, SSI, 1995, vol. 76, pp. 155–62

  8. M. Coduri, M. Scavini, M. Allieta, M. Brunelli, and C. Ferrero: J. Phys. Conf. Ser., 2012, pp. 012056–66

  9. J. Van Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, J. Eur. Ceram. Soc. 16, 961–973 (1996)

    Article  Google Scholar 

  10. S.L. Wang, J.Y. Liu, J.T. Jia, C.S. Liao, C.H. Yan, J. Rare Earths 26, 127–130 (2008)

    Article  Google Scholar 

  11. J. Van Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, J. Am. Ceram. Soc. 80, 933–940 (1997)

    Article  Google Scholar 

  12. S.K. Tadokoro, E.N.S. Muccillo, J. Alloy. Compd. 374, 190–193 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Brissonneau.

Additional information

Manuscript submitted December 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brissonneau, L., Mathieu, A., Tormos, B. et al. Microstructure of Yttria-Doped Ceria as a Function of Oxalate Co-Precipitation Synthesis Conditions. Metallurgical and Materials Transactions E 3, 264–271 (2016). https://doi.org/10.1007/s40553-016-0087-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0087-8

Keywords

Navigation