Skip to main content
Log in

Enhanced semi-explicit particle finite element method via a modified Strang splitting operator for incompressible flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This work presents an enhanced version of the semi-explicit particle finite element method for incompressible flow problems. This goal is achieved by improving the methodology that results from applying the Strang splitting operator by adding an acceleration term. The advective step is evaluated on the mesh considering the new term leading to a more efficient algorithm. Two test cases are solved for validating the methodology and estimating its accuracy. The numerical results demonstrate that the proposed scheme improves the accuracy and the computational efficiency of the semi-explicit PFEM scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Girault V, Raviart P-A (2011) Finite element methods for Navier–Stokes equations: theory and algorithms, 1st edn. Springer Publishing Company Incorporated, Berlin

    MATH  Google Scholar 

  2. Ramaswamy B, Kawahara M (1987) Lagrangian finite element analysis applied to viscous free surface fluid flow. Int J Numer Methods Fluids 7(9):953–984

    MATH  Google Scholar 

  3. Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of Newtonian fluid flows. Int J Numer Methods Eng 43(4):607–619

    MathSciNet  MATH  Google Scholar 

  4. Muttin F, Coupez T, Bellet M, Chenot J-L (1993) Lagrangian finite-element analysis of time-dependent viscous free-surface flow using an automatic remeshing technique: application to metal casting flow. Int J Numer Methods Eng 36(12):2001–2015

    MATH  Google Scholar 

  5. Bennett A (2006) Lagrangian fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    MathSciNet  MATH  Google Scholar 

  7. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1:267–307

    MATH  Google Scholar 

  8. Idelsohn SR, Marti J, Souto-Iglesias A, Oñate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43(1):125–132

    MATH  Google Scholar 

  9. Marti J, Idelsohn S, Limache A, Calvo J, D’Elía N (2006) A Fully coupled particle method for quasi-incompressible fluid hypoelastic structure interactions. In Cardona A, Nigro N, Sonzogni V, Storti M (eds) Mecánica computacional, vol XXV, pp 809–827

  10. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids. Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    MathSciNet  MATH  Google Scholar 

  11. Cremonesi M, Frangi A, Perego U (2010) A Lagrangian finite element approach for the analysis of fluid-structure interaction problems. Int J Numer Methods Eng 84(5):610–630

    MathSciNet  MATH  Google Scholar 

  12. Cremonesi M, Meduri S, Perego U, Frangi A (2017) An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comput Part Mech 4(3):357–369

    Google Scholar 

  13. Cerquaglia ML, Deliége G, Boman R, Terrapon V, Ponthot J-P (2017) Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method. Int J Numer Methods Eng 110(10):921–946

    MathSciNet  Google Scholar 

  14. Cerquaglia ML, Thomas D, Boman R, Terrapon V, Ponthot J-P (2019) A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects. Comput Methods Appl Mech Eng 348:409–442

    MathSciNet  MATH  Google Scholar 

  15. Zhu M, Scott MH (2014) Improved fractional step method for simulating fluid-structure interaction using the PFEM. Int J Numer Methods Eng 99(12):925–944

    MathSciNet  MATH  Google Scholar 

  16. Zhu M, Scott MH (2017) Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int J Numer Meth Eng 109(9):1219–1236

    MathSciNet  Google Scholar 

  17. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198(33–36):2750–2767

    MATH  Google Scholar 

  18. Idelsohn SR, Mier-Torrecilla M, Nigro N, Oñate E (2010) On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Comput Mech 46(1):115–124

    MathSciNet  MATH  Google Scholar 

  19. Idelsohn SR, Mier-Torrecilla M, Marti J, Oñate E (2011) The particle finite element method for multi-fluid flows. In: Oñate E, Owen R (eds) Particle-Based Methods: Fundamentals and Applications. Springer, Netherlands, pp 135–158

    Google Scholar 

  20. Oñate E, Rojek J, Chiumenti M, Idelsohn SR, Del Pin F, Aubry R (2006) Advances in stabilized finite element and particle methods for bulk forming processes. Comput Methods Appl Mech Eng 195(48–49):6750–6777

    MathSciNet  MATH  Google Scholar 

  21. Hyre M (2002) Numerical simulation of glass forming and conditioning. J Am Ceram Soc 85(5):1047–1056

    Google Scholar 

  22. Feulvarch E, Moulin N, Saillard P, Lornage T, Bergheau J-M (2005) 3D simulation of glass forming process. J Mater Process Technol 164:1197–1203

    Google Scholar 

  23. Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644

    MathSciNet  MATH  Google Scholar 

  24. Becker P (2015) An enhanced particle finite element method with special emphasis on landslides and debris flows. Ph.D. Thesis, Universitat Politecnica de Catalunya

  25. Idelsohn SR, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):197–222

    Google Scholar 

  26. Yazici Y (2010) Operator splitting methods for differential equations. Ph.D. Thesis, Izmir Institute of Technology

  27. Semenov YuA (1977) On the lie-trotter theorems in l (p) spaces. Lett Math Phys 1:379–385

    MathSciNet  MATH  Google Scholar 

  28. Omer R, Bashier E, Arbab AI (2017) Numerical solutions of a system of odes based on lie-trotter and Strang operator-splitting methods. Univers J Comput Math 5(2):20–24

    Google Scholar 

  29. Marti J, Ryzhakov P (2020) Improving accuracy of the moving grid particle finite element method via a scheme based on Strang splitting. Comput Methods Appl Mech Eng 369:113212

    MathSciNet  MATH  Google Scholar 

  30. Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal 5(3):506–517

    MathSciNet  MATH  Google Scholar 

  31. MacNamara S, Strang G (2016) Operator splitting. In: Splitting methods in communication, imaging, science, and engineering. Springer, pp 95–114

  32. Marti J, Oñate E (2022) An enhanced semi-explicit particle finite element method for incompressible flows. Comput Mech 70(3):607–620

    MathSciNet  MATH  Google Scholar 

  33. Gimenez J, Aguerre H, Idelsohn SR, Nigro N (2019) A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. J Comput Phys 380:295–310

    MathSciNet  MATH  Google Scholar 

  34. Ryzhakov P, Marti J, Idelsohn SR, Oñate E (2017) Fast fluid-structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097

    MathSciNet  MATH  Google Scholar 

  35. Delaunay B et al (1934) Sur la sphere vide. Izv Akad Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793–800):1–2

    MATH  Google Scholar 

  36. Edelsbrunner H, Tan TS (1993) An upper bound for conforming Delaunay triangulations. Discrete Comput Geom 10(2):197–213

    MathSciNet  MATH  Google Scholar 

  37. Edelsbrunner H, Mücke E (1994) Three-dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    MATH  Google Scholar 

  38. Holzapfel Gerhard A (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490

    MathSciNet  Google Scholar 

  39. Aubry R, Oñate E, Idelsohn SR (2006) Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Int J Comput Mech 38:294–309

    MathSciNet  MATH  Google Scholar 

  40. Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26

    MathSciNet  MATH  Google Scholar 

  41. Yanenko, N.N.: The method of fractional steps. In: The solution of problems of mathematical physics in several variables. Springer edition. Translated from Russian by T. Cheron (1971)

  42. Temam R (1969) Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pase fractionaires. Arch Ration Mech Anal 32:135–153

    MATH  Google Scholar 

  43. Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(20–21):2681–2706

    MathSciNet  MATH  Google Scholar 

  44. Marti J, Ryzhakov P (2019) An explicit-implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids. Comput Methods Appl Mech Eng 350:750–765

    MathSciNet  MATH  Google Scholar 

  45. Oñate E (2016) Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv Model Simul Eng Sci 3:12

    Google Scholar 

  46. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182(3):355–370

    MathSciNet  MATH  Google Scholar 

  47. Kratos Multiphysics at GitHub. https://github.com/KratosMultiphysics/Kratos. Accessed 03 Jan 2020

  48. Cremonesi M, Meduri S, Perego U (2019) Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the particle finite element method. Comput Part Mech 7:05

    Google Scholar 

  49. Mittal S, Kumar V (2001) Flow-induced vibrations of a light circular cylinder at Reynolds numbers 103 to 104. J Sound Vib 245:923–946, 08

    Google Scholar 

Download references

Acknowledgements

The authors acknowledges financial support from the CERCA programme of the Generalitat de Catalunya, the Ministerio de Ciencia, Innovacion e Universidades of Spain via the Severo Ochoa Programme for Centres of Excellence in RD (referece: CEX2018-000797-S) and the project PARAFLUIDS (PID2019-104528RB-100) of the National Research Plan of the Spanish Govermment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Marti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marti, J., Oñate, E. Enhanced semi-explicit particle finite element method via a modified Strang splitting operator for incompressible flows. Comp. Part. Mech. 10, 1463–1475 (2023). https://doi.org/10.1007/s40571-022-00522-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00522-5

Keywords

Navigation