Skip to main content
Log in

Population Genetics of Host-Associated Microbiomes

  • Population Genetics (E Lewallen and C Bonin, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Host-associated microbiomes can play key roles in the health of animals and plants, but fundamental aspects of the dynamics and evolution of microbial communities are not fully understood.

Recent Findings

Several recent studies have sequenced and analyzed the entire diversity of microbial species and strains in different host-associated microbiomes. These studies analyze the population genetics of host-associated microbes, yet many questions remain unanswered.

Summary

In this review, we describe the key insights that have been gained by recent microbiome population genetics studies and how they have contributed to our understanding of the fundamental mechanisms that alter the population dynamics of entire microbial communities. We further discuss the technical limitations of current approaches and how new methods and model systems would allow for better genetic characterization of host-associated microbiome populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Smith JM, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993;90:4384–8. https://doi.org/10.1073/pnas.90.10.4384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501. https://doi.org/10.1093/gbe/evx026.

    Article  PubMed Central  Google Scholar 

  3. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009;3:199–208. https://doi.org/10.1038/ismej.2008.93.

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47. https://doi.org/10.1016/j.tim.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20. https://doi.org/10.1126/science.

    Article  CAS  PubMed  Google Scholar 

  6. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 2008;89:311–36. https://doi.org/10.1017/S001667230800949X.

    Article  Google Scholar 

  7. Rocha EPC, Feil EJ. Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet. 2010;6:e1001104. https://doi.org/10.1371/journal.pgen.1001104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lapierre M, Blin C, Lambert A, Achaz G, Rocha EPC. The impact of selection, gene conversion, and biased sampling on the assessment of microbial demography. Mol Biol Evol. 2016;33:1711–25. https://doi.org/10.1093/molbev/msw048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hershberg R, Petrov DA. General rules for optimal codon choice. PLoS Genet. 2009;5:e1000556. https://doi.org/10.1371/journal.pgen.1000556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Charlesworth J, Eyre-Walker A. The rate of adaptive evolution in enteric bacteria. Mol Biol Evol. 2006;23:1348–56. https://doi.org/10.1093/molbev/msk025.

    Article  CAS  PubMed  Google Scholar 

  11. Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50(4):513–24. https://doi.org/10.1080/10635150118398.

    Article  CAS  PubMed  Google Scholar 

  12. Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76. https://doi.org/10.1111/j.1574-6976.2011.00292.x.

    Article  CAS  PubMed  Google Scholar 

  13. Dykhuizen DE, Green L. Recombination in Escherichia coli and the definition of biological species. J Bacteriol. 1991;173(22):7257–68. https://doi.org/10.1128/jb.173.22.7257-7268.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vulic M, Dionisio F, Taddei F, Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 2002;94(18):9763–7. https://doi.org/10.1073/pnas.94.18.9763.

    Article  Google Scholar 

  15. Eppley JM, Tyson GW, Getz WM, Banfield JF. Genetic exchange across a species boundary in the archaeal genus ferroplasma. Genetics. 2007;177:407–16. https://doi.org/10.1534/genetics.107.072892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51. https://doi.org/10.1126/science.1218198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005;102:2567–72. https://doi.org/10.1073/pnas.0409727102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004. https://doi.org/10.1038/nbt.4229.

    Article  CAS  PubMed  Google Scholar 

  19. Mallet J. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc B biol Sci. 2008;363:2971–86. https://doi.org/10.1098/rstb.2008.0081.

    Article  Google Scholar 

  20. Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF. Searching for species in haloarchaea. Proc Natl Acad Sci U S A. 2007;104:14092–7. https://doi.org/10.1073/pnas.0706358104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci U S A. 2010;107:18634–9. https://doi.org/10.1073/pnas.1009480107.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, et al. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio. 2011;2:e00335–10. https://doi.org/10.1128/mBio.00335-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol. 2017;13:e1005640. https://doi.org/10.1371/journal.pcbi.1005640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515:261–3. https://doi.org/10.1038/nature13685.

    Article  CAS  PubMed  Google Scholar 

  25. Bobay L-M, Ochman H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol Biol. 2018;18:153. https://doi.org/10.1186/s12862-018-1272-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bobay LM, Rocha EPC, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol. 2013;30:737–51. https://doi.org/10.1093/molbev/mss279.

    Article  CAS  PubMed  Google Scholar 

  27. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009;5:e1000344. https://doi.org/10.1371/journal.pgen.1000344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC. Identification of protein secretion systems in bacterial genomes. Sci Rep. 1615;2016:1–21. https://doi.org/10.1007/978-1-4939-7033-9_1.

    Article  CAS  Google Scholar 

  29. Baptist JN, Shaw CR, Mandel M. Comparative zone electrophoresis of enzymes of Pseudomonas solanacearum and Pseudomonas cepacia. J Bacteriol. 1971;108(2):799–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:3140–5. https://doi.org/10.1073/pnas.95.6.3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17:175–88. https://doi.org/10.1038/nrg.2015.16.

    Article  CAS  PubMed  Google Scholar 

  32. • Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;33:1045–52. https://doi.org/10.1038/nbt.3319 This study recovered strain diversity from 75 species of the human gut microbiome and showed that strains of Bifidobacterium longum contain the human milk oligosaccharide utilization cluster and are found in higher relative abundance in the infant gut microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13:435–8. https://doi.org/10.1038/nmeth.3802.

    Article  CAS  PubMed  Google Scholar 

  34. Zolfo M, Tett A, Jousson O, Donati C, Segata N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 2017;45:e7. https://doi.org/10.1093/nar/gkw837.

    Article  CAS  PubMed  Google Scholar 

  35. •• Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure & genetic diversity from metagenomes. Genome Res. 2017;27:626–38. https://doi.org/10.1101/gr.216242.116 This study characterized thousands of strains for 125 species of the human gut microbiome and showed that a single strain usually dominates each species. Different individuals rarely present the same strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018;23:229–240.e5. https://doi.org/10.1016/j.chom.2018.01.003 Analysis of fecal transplants from donors to patients. Results showed that either no strain or the complete set of strains colonizes patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh HJ, Cuenca M, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014. https://doi.org/10.1038/s41467-019-08844-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015;28:721–41. https://doi.org/10.1128/CMR.00127-14.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dingle KE, Elliott B, Robinson E, Griffiths D, Eyre DW, Stoesser N, et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol. 2014;6:36–52. https://doi.org/10.1093/gbe/evt204.

    Article  PubMed  Google Scholar 

  40. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45:109–13. https://doi.org/10.1038/ng.2478.

    Article  CAS  PubMed  Google Scholar 

  41. Yan Q, Zhang J, Chen C, Zhou H, Du P, Cui Z, et al. Multilocus sequence typing (MLST) analysis of 104 Clostridium difficile strains isolated from China. Epidemiol Infect. 2013;141:195–9. https://doi.org/10.1017/S0950268812000453.

    Article  CAS  PubMed  Google Scholar 

  42. Levade I, Terrat Y, Leducq J-B, Weil AA, Mayo-Smith LM, Chowdhury F, et al. Vibrio cholerae genomic diversity within and between patients. Microb Genomics. 2017;3. https://doi.org/10.1099/mgen.0.000142.

  43. Suzuki R, Shiota S, Yamaoka Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol. 2012;12:203–13. https://doi.org/10.1016/j.meegid.2011.12.002.

    Article  PubMed  Google Scholar 

  44. Secka O, Moodley Y, Antonio M, Berg DE, Tapgun M, Walton R, et al. Population genetic analyses of Helicobacter pylori isolates from Gambian adults and children. PLoS One. 2014;9:e109466. https://doi.org/10.1371/journal.pone.0109466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Linz B, Vololonantenainab CRR, Seck A, Carod JF, Dia D, Garin B, et al. Population genetic structure and isolation by distance of Helicobacter pylori in Senegal and Madagascar. PLoS One. 2014;9:e87355. https://doi.org/10.1371/journal.pone.0087355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montano V, Didelot X, Foll M, Linz B, Reinhardt R, Suerbaum S, et al. Worldwide population structure, long-term demography, and local adaptation of Helicobacter pylori. Genetics. 2015;200:947–63. https://doi.org/10.1534/genetics.115.176404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P. Phylogenetically typing bacterial strains from partial SNP genotypes observed from direct sequencing of clinical specimen metagenomic data. Genome Med. 2015;7:52. https://doi.org/10.1186/s13073-015-0176-9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ferdous M, Zhou K, De Boer RF, Friedrich AW, Kooistra-Smid AMD, Rossen JWA. Comprehensive characterization of Escherichia coli O104: H4 isolated from patients in the Netherlands. Front Microbiol. 2015;6:1348. https://doi.org/10.3389/fmicb.2015.01348.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guy L, Jernberg C, Arvén Norling J, Ivarsson S, Hedenström I, Melefors Ö, et al. Adaptive mutations and replacements of virulence traits in the Escherichia coli O104:H4 outbreak population. PLoS One. 2013;8:e63027. https://doi.org/10.1371/journal.pone.0063027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, FitzGerald M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci U S A. 2012;109:3065–70. https://doi.org/10.1073/pnas.1121491109.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res. 2015;25:119–28. https://doi.org/10.1101/gr.180190.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 2015;53:2410–26. https://doi.org/10.1128/JCM.00008-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loman NJ, Constantinidou C, Christner M, Chan JZM, Quick J, Weir JC, et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA - J Am Med Assoc. 2013;309:1502–10. https://doi.org/10.1001/jama.2013.3231.

    Article  CAS  Google Scholar 

  54. •• Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25:656–667.e8. https://doi.org/10.1016/j.chom.2019.03.007 The authors characterized within-host evolution of a member of the human gut microbiome: B. fragilis . Adaptive mutations in B. fragilis was shown to lead to the establishment of multiple co-existing lineages within the same host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019;17:e3000102. https://doi.org/10.1371/journal.pbio.3000102 This study showed evidence of within-host evolution through mutations, recombination and adaptation across 40 species of the human gut microbiome.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Medicine. 2019 in-press.

  57. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9:811–4. https://doi.org/10.1038/nmeth.2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2012;493:45–50. https://doi.org/10.1038/nature11711 One of the first studies to analyze the patterns of selection of the human gut microbiome using shotgun metagenomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2:e00164–16. https://doi.org/10.1128/mSystems.00164-16.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583–94. https://doi.org/10.1016/j.cell.2014.12.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJM, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015;12:E2930–8. https://doi.org/10.1073/pnas.1423854112.

    Article  CAS  Google Scholar 

  62. Voigt AY, Costea PI, Kultima JR, Li SS, Zeller G, Sunagawa S, et al. Temporal and technical variability of human gut metagenomes. Genome Biol. 2015;16:73. https://doi.org/10.1186/s13059-015-0639-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu A, Sunagawa S, Mende DR, Bork P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 2015;16:82. https://doi.org/10.1186/s13059-015-0646-9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–6. https://doi.org/10.1038/nature23889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26:1612–25. https://doi.org/10.1101/gr.201863.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, et al. Structural variation in the gut microbiome associates with host health. Nature. 2019;568:43–8. https://doi.org/10.1038/s41586-019-1065-y.

    Article  CAS  PubMed  Google Scholar 

  67. Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J, Forslund K, et al. Subspecies in the global human gut microbiome. Mol Syst Biol. 2017;13:960. https://doi.org/10.15252/msb.20177589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat M, et al. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl Environ Microbiol. 2018;84:e02377–17. https://doi.org/10.1128/AEM.02377-17 The authors analyzed the evolution of E. coli within human hosts and estimated a significantly higher mutation rate than reported by in vitro analyses. In contrast to other studies, no signs of selection were detected.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, et al. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A. 2013;110:222–7. https://doi.org/10.1073/pnas.1219574110.

    Article  PubMed  Google Scholar 

  70. Raymann K, Bobay L-M, Moran NA. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol Ecol. 2017;27:2057–66. https://doi.org/10.1111/mec.14434 Population genetics analysis of two species of the honey bee gut microbiome following antibiotic treatments using the MAST approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Powell JE, Ratnayeke N, Moran NA. Strain diversity and host specificity in a specialized gut symbiont of honey bees and bumble bees. Mol Ecol. 2016;25(18):4461–71. https://doi.org/10.1111/mec.13787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caro-Quintero A, Ochman H. Assessing the unseen bacterial diversity in microbial communities. Genome Biol Evol. 2015;7:3416–25. https://doi.org/10.1093/gbe/evv234.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science (80- ). 2016;353:380–2. https://doi.org/10.1126/science.aaf3951.

    Article  CAS  Google Scholar 

  74. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2016;12:902–3. https://doi.org/10.1038/nmeth.3589.

    Article  CAS  Google Scholar 

  75. Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol. 2019;37:179–85. https://doi.org/10.1038/s41587-018-0008-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601. https://doi.org/10.1038/ismej.2015.241 This study followed the evolution of the microbial community of the same lake sampled over seven years. Results revealed that most species evolve by gene sweeps rather than genome sweeps.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504. https://doi.org/10.1038/s41586-019-0965-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alper J, Anestidou L, Ogilvie J. Animal models for microbiome research: advancing basic translational science. Proceedings of a Workshop. Natl. Acad. Press. 2018.

  79. Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JCC, Barratt MJ, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–71. https://doi.org/10.1016/j.cell.2016.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015;8:1–16. https://doi.org/10.1242/dmm.017400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018;75:149–60. https://doi.org/10.1007/s00018-017-2693-8.

    Article  CAS  PubMed  Google Scholar 

  82. Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. MBio. 2018;9:e01348–18. https://doi.org/10.1128/mBio.01348-18.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Burns AR, Guillemin K. The scales of the zebrafish: host–microbiota interactions from proteins to populations. Curr Opin Microbiol. 2017;38:137–41. https://doi.org/10.1016/j.mib.2017.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Douglas AE. The Drosophila model for microbiome research. Lab Anim (NY). 2018;47:157–64. https://doi.org/10.1038/s41684-018-0065-0.

    Article  Google Scholar 

  85. Correa MA, Matusovsky B, Brackney DE, Steven B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun. 2018;9:4464. https://doi.org/10.1038/s41467-018-07014-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng H, Steele MI, Leonard SP, Motta EVS, Moran NA. Honey bees as models for gut microbiota research. Lab Anim (NY). 2018;47:317–25. https://doi.org/10.1038/s41684-018-0173-x This review highlights the tractability and usefulness of the honey bee as a model system for gut microbiome research.

    Article  Google Scholar 

  87. Zhang F, Berg M, Dierking K, Félix MA, Shapira M, Samuel BS, et al. Caenorhabditis elegans as a model for microbiome research. Front Microbiol. 2017;8:485. https://doi.org/10.3389/fmicb.2017.00485.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5:1595–608. https://doi.org/10.1038/ismej.2011.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018; 6:49. doi: https://doi.org/10.1186/s40168-018-0435-2.

  90. Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol. 2016;4:38. https://doi.org/10.1186/s12915-016-0258-1.

    Article  CAS  Google Scholar 

  91. Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3:307–21. https://doi.org/10.4161/gmic.19896.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Raymann K, Moran NA. The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci. 2018;26:97–104. https://doi.org/10.1016/j.cois.2018.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14:374–84. https://doi.org/10.1038/nrmicro.2016.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moran NA. Genomics of the honey bee microbiome. Curr Opin insect Sci. 2015;10:22–8. https://doi.org/10.1016/j.cois.2015.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A. 2012;109:11002–7. https://doi.org/10.1073/pnas.1202970109.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ellegaard KM, Engel P. Genomic diversity landscape of the honey bee gut microbiota. Nat Commun. 2019;10:446. https://doi.org/10.1038/s41467-019-08303-0 Authors use shotgun metagenomics to access strain diversity within the bee gut and find that each honey bee harbors a distinct community at the functional level. Findings highlight the need to move beyond phylotype-level characterizations to understand the function, and illustrates the potential for using the honey bee as a model system for strain-level analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ellegaard KM, Engel P. Beyond 16S rRNA community profiling: intra-species diversity in the gut microbiota. Front Microbiol. 2016;7:1475. https://doi.org/10.3389/fmicb.2016.01475.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kešnerová L, RAT M, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 2017;15:e2003467. https://doi.org/10.1371/journal.pbio.2003467 This study used untargeted metabolomics to profiled metabolic changes in gnotobiotic bees that were colonized with a complete microbiota. The authors found that honey bee gut bacteria can metabolize a wide range of compounds in the gut and provide insights into how metabolic activities are divided within gut communities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a memb. Int J Syst Evol Microbiol. 2013;63:2008–18. https://doi.org/10.1099/ijs.0.044875-0.

    Article  CAS  PubMed  Google Scholar 

  100. Engel P, Kwong WK, Moran NA. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol. 2013;63:3646–51. https://doi.org/10.1099/ijs.0.049569-0.

    Article  CAS  PubMed  Google Scholar 

  101. Kwong WK, Engel P, Koch H, Moran NA. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 2014;111:11509–14. https://doi.org/10.1073/pnas.1405838111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio. 2016;7:e01326–16. https://doi.org/10.1128/mBio.01326-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA. Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci U S A. 2016;113:13887–92. https://doi.org/10.1073/pnas.1610856113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Steele MI, Kwong WK, Whiteley M, Moran NA. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. MBio. 2017;8:e01630–17. https://doi.org/10.1128/mBio.01630-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Engel P, Stepanauskas R, Moran NA. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 2014;10:e1004596. https://doi.org/10.1371/journal.pgen.1004596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ellegaard KM, Brochet S, Bonilla-Rosso G, Emery O, Glover N, Hadadi N, et al. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol Ecol. 2019;28:2224–37. https://doi.org/10.1111/mec.15075 The authors study host specialization of gut symbionts by investigating Lactobacillus Firm5, a bacteria found in the gut of both honey bees and bumble bees that separates into deep-branching host-specific phylogenetic lineages. Results revealed genomic changes underlying host specialization.

    Article  PubMed  Google Scholar 

  107. Bonilla-Rosso G, Engel P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr Opin Microbiol. 2018;43:69–76. https://doi.org/10.1016/j.mib.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mathieu Groussin for reading and providing feedback on the manuscript.

Funding

This work was supported by the National Science Foundation (DEB-1831730) to L-M.B. and USDA NIFA (2018-02589) to K.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasie Raymann.

Ethics declarations

Conflict of Interest

Kasie Raymann and Louis-Marie Bobay declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Population Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobay, LM., Raymann, K. Population Genetics of Host-Associated Microbiomes. Curr Mol Bio Rep 5, 128–139 (2019). https://doi.org/10.1007/s40610-019-00122-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-019-00122-y

Keywords

Navigation