Skip to main content
Log in

Pre-colonized seedlings with arbuscular mycorrhizal fungi: an alternative for the cultivation of Jatropha curcas L. in salinized soils

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to test the hypothesis that Jatropha curcas L. seedlings previously inoculated with arbuscular mycorrhizal fungi (AMF) in non-salinized soil and later transplanted to salinized soil are more tolerant to saline stress. The experiment was conducted in greenhouse using a randomized block design in a 4 × 2 factorial scheme. The first factor consisted of salinized soil with electrical conductivity (EC) of 2, 5, 8 and 10 dS/m, and the second consisted of non-colonized plants, and plants that were pre-colonized with AMF, with eight replicates. Salt had a deleterious effect on plants non-inoculated with AMF, which showed reduced growth and photosynthetic activity and increased stress indicators, such as lipid peroxidation, proline accumulation, and high antioxidant enzymatic activity. On the other hand, pre-colonized plants were less affected by the presence of salt in the soil. Seedlings pre-inoculated with AMF presented the same growth rate and photosynthetic activity in all saline treatments. No increase in lipid peroxidation and antioxidant enzymatic activity was observed in seedlings pre-inoculated with AMF even under high saline concentration of 10 dS/m EC. The results suggest the existence of a mechanism to mitigate the effects of saline stress on pre-colonized seedlings. Therefore, pre-colonized J. curcas seedlings are an alternative for the cultivation of this species in salinized soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084. doi:10.1016/j.biombioe.2008.03.003

    Article  CAS  Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Gupta KK (2012) Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J Appl Nat Sci 4:144–155

    CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54. doi:10.1007/s005720000055

    Article  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:1–15

    Google Scholar 

  • Anderson I, Robertson D (1959) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol 35:531–534. doi:10.1104/pp.35.4.531

    Article  Google Scholar 

  • Andréo-Souza Y, Pereira AL, Silva FFSD, Riebeiro-Reis RC, Evangelista MRV, Castro RDD, Dantas BF (2010) Effect of salinity on physic nut (Jatropha curcas L.) seed germination and seedling initial growth. Rev Bras Sementes 32:83–92. doi:10.1590/S0101-31222010000200010

    Article  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell Environ 30:1107–1125. doi:10.1111/j.1365-3040.2007.01680.x

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58:4216–4222. doi:10.1021/jf9041479

    Article  CAS  PubMed  Google Scholar 

  • Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis V2: development, carbon metabolism, and plant productivity. Elsevier, London, pp 263–343

    Google Scholar 

  • Bonfante P, Desirò A (2015) Arbuscular mycorrhizas: the lives of beneficial fungi and their plant hosts. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer Cham, Heidelberg, pp 235–245

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. In: Flesicher S, Packer L (eds) Methods in enzymology. Academic Press, New York, pp 302–310

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281. doi:10.1023/A:1010564013601

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509. doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428. doi:10.1093/jxb/ers033

    Article  CAS  PubMed  Google Scholar 

  • Enteshari S, Hajbagheri S (2011) Effects of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimum basilicum L. Iran J Plant Physiol 1:215–222

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi:10.1093/aob/mcp251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190. doi:10.1007/s00572-002-0170-0

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Cab International, Wallingford

    Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/s00572-003-0274-1

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi:10.1007/s00374-003-0636-z

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760. doi:10.1007/s00248-007-9239-9

    Article  CAS  PubMed  Google Scholar 

  • Gübitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82. doi:10.1016/S0960-8524(99)00069-3

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. doi:10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170. doi:10.1111/j.1469-8137.2006.01730.x

    Article  CAS  PubMed  Google Scholar 

  • Hendry GAF, Grime JP (1993) Methods in comparative plant ecology: a laboratory manual. Chapman & Hall, London

    Book  Google Scholar 

  • Hunt R (1990) Basic growth analysis: plant growth analysis for beginners. Unwin Hyman, London

    Book  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468. doi:10.1007/s002990100353

    Article  CAS  Google Scholar 

  • Kalra Y (1998) Handbook of reference methods for plant analysis. CRC Press, Boca Raton

    Google Scholar 

  • Kumar A, Sharma S, Mishra S (2009) Effect of alkalinity on growth performance of Jatropha curcas inoculated with PGPR and AM fungi. J Phytol 1:177–184

    Google Scholar 

  • Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306. doi:10.1007/s00344-009-9136-1

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S, Mishra S, Dames JF (2015) Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2 SO4 salt stress. Plant Biosyst 149:260–269. doi:10.1080/11263504.2013.845268

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. doi:10.1016/j.plaphy.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Miranda JD (2008) Micorriza arbuscular: ocorrência e manejo. Embrapa Cerrados, Planaltina

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. doi:10.1093/jxb/ert208

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen-Peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237. doi:10.2135/cropsci2007.03.0166

    Article  Google Scholar 

  • Okuma E, Murakami Y, Shimoishi Y, Tada M, Murata Y (2004) Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci Plant Nutr 50:1301–1305. doi:10.1080/00380768.2004.10408608

    Article  CAS  Google Scholar 

  • Oliveira IRS (2010) Crescimento inicial do pinhão-manso (Jatropha curcas L.) em função da salinidade da água de irrigação. Rev Caatinga 23:40–45

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. US Salinity Laboratory, Washington DC

    Google Scholar 

  • Rivelli AR, James RA, Munns R, Condon AG (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct Plant Biol 29:1065–1074. doi:10.1071/PP01154

    Article  CAS  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus SPP.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318. doi:10.1016/0098-8472(91)90055-S

    Article  Google Scholar 

  • Roy D, Basu N, Bhunia A, Banerjee SK (1993) Counteraction of exogenous l-proline with NaCl in salt-sensitive cultivar of rice. Biol Plant 35:69–72. doi:10.1007/BF02921122

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albertó EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287. doi:10.1007/s11104-006-9015-5

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151. doi:10.1016/j.jplph.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. doi:10.1007/s00572-008-0180-7

    Article  CAS  PubMed  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568. doi:10.1111/j.1399-3054.1987.tb09240.x

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of colonized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348. doi:10.1016/S0167-8809(02)00044-0

    Article  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

Download references

Acknowledgement

We are indebted to International Collection of Glomeromycota Culture (CICG, Blumenau, Brazil, www.furb.br/cicg), for providing the isolated cultures of arbuscular mycorrhizal fungi for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilliani Felipe Barros de Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Supplementary material 2 (PDF 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, D.F.B., Endres, L., Silva, J.V. et al. Pre-colonized seedlings with arbuscular mycorrhizal fungi: an alternative for the cultivation of Jatropha curcas L. in salinized soils. Theor. Exp. Plant Physiol. 29, 129–142 (2017). https://doi.org/10.1007/s40626-017-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-017-0089-7

Keywords

Navigation