Skip to main content
Log in

Th22 cells in allergic disease

  • Review
  • Published:
Allergo Journal International Aims and scope Submit manuscript

Summary

During the last decade, the field of T cell immunology started to confuse the scientific community. More and more subtypes of T helper cells and their counterparts in the innate immune system are described. We are just at the beginning to understand which specific function the distinct subtypes fulfill. Th22 cells are terminally differentiated and very specialized T helper cells characterized by the secretion of their signature cytokine IL-22 and lack of IL-4, IL-17 and IFN-γ. The main function of Th22 cells is to protect epithelial barrier organs such as skin and lung, but also to modulate inflamed and injured tissue. This review summarizes our current knowledge on Th22 cells and their function in allergic disease.

Cite this as Eyerich K, Eyerich S. Th22 cells in allergic disease. Allergo J Int 2015;24:1–7 DOI: 10.1007/s40629-015-0039-3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACD:

Allergic contact dermatitis

AE:

Atopic eczema

AHR:

Aryl-hydrocarbon-receptor

CMC:

Chronic mucocutaneous candidiasis

FGF:

Fibroblast growth factor

IFN:

Interferon

IL:

Interleukin

ILC:

Innate lymhhoid cell

Lti:

Lymphoid-tissue inducer

MMP:

Matrix metalloproteinase

NK:

Natural killer cell

PDGF:

Platelet-derived growth factor

ROR:

RAR-related orphan receptor

TCR:

T-cell-receptor

TGF:

Transforming growth factor

Th:

T helper cell

TLR:

Toll-like-receptor

TNF:

Tumor necrosis factor

Treg:

Regulatory T cell

Literatur

  1. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145–73

    Article  CAS  PubMed  Google Scholar 

  2. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993;150:5445–56

    CAS  PubMed  Google Scholar 

  3. Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gammaand interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 2000;115:81–7

    Article  CAS  PubMed  Google Scholar 

  4. Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 1999;162:494–502

    CAS  PubMed  Google Scholar 

  5. Eyerich S, Eyerich K, Cavani A, Schmidt-Weber C. IL-17 and IL-22: siblings, not twins. Trends Immunol 2010;31:354–61

    Article  CAS  PubMed  Google Scholar 

  6. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC. IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 2000;1:488–94

    Article  CAS  PubMed  Google Scholar 

  7. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 2009;119:3573–85

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 2009;10:857–63

    Article  CAS  PubMed  Google Scholar 

  9. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 2009;10:864–71

    Article  CAS  PubMed  Google Scholar 

  10. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 2013;13:145–9y

    Article  CAS  PubMed  Google Scholar 

  11. Fujita H, Nograles KE, Kikuchi T, Gonzalez J, Carucci JA, Krueger JG. Human Langerhans cells induce distinct IL- 22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci U S A 2009;106:21795–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Riis JL, Johansen C, Vestergaard C, Bech R, Kragballe K, Iversen L. Kinetics and differential expression of the skinrelated chemokines CCL27 and CCL17 in psoriasis, atopic dermatitis and allergic contact dermatitis. Exp Dermatol 2011;20:789–94

    Article  CAS  PubMed  Google Scholar 

  13. Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F et al. IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol 2010;184:4880–8

    Article  CAS  PubMed  Google Scholar 

  14. Pennino D, Bhavsar PK, Effner R, Avitabile S, Venn P, Quaranta M et al. IL-22 suppresses IFN-gamma-mediated lung inflammation in asthmatic patients. J Allergy Clin Immunol 2013;131:562–70

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Fujita H, Mitsui H, Yanofsky VR, Fuentes-Duculan J, Pettersen JS et al. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One 2013;8:e62154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004;21:241–54

    Article  CAS  PubMed  Google Scholar 

  17. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 2008;159:1092–102

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006;36:1309–23

    Article  CAS  PubMed  Google Scholar 

  19. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 2005;174: 3695–702

    Article  CAS  PubMed  Google Scholar 

  20. Rendon JL, Choudhry MA. Th17 cells: critical mediators of host responses to burn injury and sepsis. J Leukoc Biol 2012;92:529–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007;445:648–51

    Article  CAS  PubMed  Google Scholar 

  22. Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G et al. Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother 2012;61:1965–75

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Tang Y, Guo S, Zhang Y, Tian Y, Ni B et al. Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. Pancreas 2014;43:470–7

    Article  CAS  PubMed  Google Scholar 

  24. Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 2013;494:361–5

    Article  PubMed  Google Scholar 

  25. Xu W, Presnell SR, Parrish-Novak J, Kindsvogel W, Jaspers S, Chen Z et al. A soluble class II cytokine receptor, IL- 22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci U S A 2001;98:9511–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006;203:2271–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C et al. IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 2011;41:1894–901

    Article  CAS  PubMed  Google Scholar 

  28. Eyerich K, Eyerich S, Hiller J, Behrendt H, Traidl-Hoffmann C. Chronic mucocutaneous candidiasis, from bench to bedside. Eur J Dermatol 2010;20:260–5

    CAS  PubMed  Google Scholar 

  29. Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol 2008;128:2640–5

    Article  CAS  PubMed  Google Scholar 

  30. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H et al. IL-17 in atopic eczema: linking allergen- specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol 2009;123: 59–66.e4

    Article  CAS  PubMed  Google Scholar 

  31. Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 2009;206:1525–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL- 1beta. Nature 2012;484:514–8

    Article  CAS  PubMed  Google Scholar 

  33. Jong A de, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat Immunol 2010;11:1102–9

    Article  PubMed Central  PubMed  Google Scholar 

  34. Niebuhr M, Scharonow H, Gathmann M, Mamerow D, Werfel T. Staphylococcal exotoxins are strong inducers of IL-22: a potential role in atopic dermatitis. J Allergy Clin Immunol 2010;126:1176–83.e4

    Article  CAS  PubMed  Google Scholar 

  35. Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy 2013;68:974–82

    Article  CAS  PubMed  Google Scholar 

  36. Bieber T. Atopic dermatitis. N Engl J Med 2008;358:1483–94

    Article  CAS  PubMed  Google Scholar 

  37. Eyerich S, Onken AT, Weidinger S, Franke A, Nasorri F, Pennino D et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. N Engl J Med 2011;365:231–8

    Article  CAS  PubMed  Google Scholar 

  38. Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D et al. Intra-individual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 2014;6:244ra90

    Article  PubMed  Google Scholar 

  39. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T et al. IL-22-producing „T22“ T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 2009;123:1244–52.e2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012;130:1344–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Johnson JR, Nishioka M, Chakir J, Risse PA, Almaghlouth I, Bazarbashi AN et al. IL-22 contributes to TGF-beta1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res 2013;14:118

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nakagome K, Imamura M, Kawahata K, Harada H, Okunishi K, Matsumoto T et al. High expression of IL-22 suppresses antigen-induced immune responses and eosinophilic airway inflammation via an IL-10-associated mechanism. J Immunol 2011;187:5077–89

    Article  CAS  PubMed  Google Scholar 

  43. Gaudenzio N, Laurent C, Valitutti S, Espinosa E. Human mast cells drive memory CD4+ T cells toward an inflammatory IL-22+ phenotype. J Allergy Clin Immunol 2013;131:1400–7.e11

    Article  CAS  PubMed  Google Scholar 

  44. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007;8:639–46

    Article  CAS  PubMed  Google Scholar 

  45. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factorbeta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007;8:942–9

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Aggarwal S, Ghilardi N, Xie MH, Sauvage FJ de, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910–4

    Article  CAS  PubMed  Google Scholar 

  49. Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008;205:1903–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 2009;206:525–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 2009;119:3573–85

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Shin HC, Benbernou N, Esnault S, Guenounou M. Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway. Cytokine 1999;11:257–66

    Article  CAS  PubMed  Google Scholar 

  53. Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC et al. Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 2007;82:354–60

    Article  CAS  PubMed  Google Scholar 

  54. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006;203:1685–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wu HY, Quintana FJ, Weiner HL. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J Immunol 2008;181:6038–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC, Sharpe AH et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 2009;10:167–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD et al. Bcl6 mediates the development of T follicular helper cells. Science 2009;325:1001–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009;10:66–74

    Article  CAS  PubMed  Google Scholar 

  59. Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmil R, Luger D et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol 2008;180:5167–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Peng MY, Wang ZH, Yao CY, Jiang LN, Jin QL, Wang J et al. Interleukin 17-producing gamma delta T cells increased in patients with active pulmonary tuberculosis. Cell Mol Immunol 2008;5:203–8

    Article  PubMed  Google Scholar 

  61. Ribot JC, Barros A de, Pang DJ, Neves JF, Peperzak V, Roberts SJ et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 2009;10:427–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. 6Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y. Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. J Immunol 2008;181:5940–7

    Article  CAS  PubMed  Google Scholar 

  63. Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells - how did we miss them? Nat Rev Immunol 2013;13:75–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Eyerich.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyerich, K., Eyerich, S. Th22 cells in allergic disease. Allergo J Int 24, 1–7 (2015). https://doi.org/10.1007/s40629-015-0039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40629-015-0039-3

Key words

Navigation