Skip to main content
Log in

Observing temporal order in living processes: on the role of time in embryology on the cell level in the 1870s and post-2000

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

The article analyses the role of time in the visual culture of two phases in embryological research: at the end of the nineteenth century, and in the years around 2000. The first case study involves microscopical cytology, the second reproductive genetics. In the 1870s we observe the first of a series of abstractions in research methodology on conception and development, moving from a method propagated as the observation of the “real” living object to the production of stained and fixated objects that are then aligned in temporal order. This process of abstraction ultimately fosters a dissociation between space and time in the research phenomenon, which after 2000 is problematized and explicitly tackled in embryology. Mass data computing made it possible partially to re-include temporal complexity in reproductive genetics in certain, though not all, fields of reproductive genetics. Here research question, instrument and modelling interact in ways that produce very different temporal relationships. Specifically, this article suggests that the different techniques in the late nineteenth century and around 2000 were employed in order to align the time of the researcher with that of the phenomenon and to economize the researcher’s work in interaction with the research material’s own temporal challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The field of reproductive genetics, used here as case study for the time around and after 2000, left its first major traces in the literature after the mid-1990s.

  2. Schmidgen uses the term “industrialization of the cell” for the period between the 1870s and the 1890s (Schmidgen 2007, p. 57; Giedion 1987).

  3. See also Schickore (2007), Clarke and Jacyna (1987), Schleiden (1842/1843, 120ff.), Gooday (1991) and Wahrig-Schmidt (1994). On the debates over the correct use of the microscope regarding conception, (see, e.g., Bischoff 1854).

  4. Historians of science tend to attribute the observation of the intrusion of the sperm to Fol’s publication 2 years later (Fol 1877; see e.g., Cremer and Cremer 2009), although contemporary reviews in the late nineteenth and early twentieth century laud Hertwig’s convincing reports on conception.

  5. As Hertwig specifically mentions Auerbach as the person who inspired him to work at the coast, this cannot yet have been a common approach by embryologists.

  6. The five-minute time interval as a standard was already broadly established in this field of cell studies (and in, for example, the physiology of neurology; see Bock von Wülfingen 2013).

  7. In the late 1870s and 1880s, arguments about processes in the cell became more strongly oriented on chemistry. The substance in the nucleus, previously studied and discussed in terms of its potential function in the context of heredity, was more and more often discussed in terms of its potential atomic constitution and molecular size (Nägeli and Weismann did this at length in order to calculate how many “gemmules” could fit into a nucleus). This “chemicalization” of the “hereditary substance” is linked to a chemicalization of microscopic work after the 1870s (Miescher 1874; Flemming 1882, pp. 99–129; Dahm 2005).

  8. The field is named and framed by specific national funding calls, university chairs and international professional associations.

  9. This method means to mark many minute DNA probes simultaneously with fluorescent substances, which are ‘read out’ by a computer program.

  10. The following analysis has been presented in a discussion of systems approaches in Bock von Wülfingen (2009).

  11. These are mice which have manipulated genetic material (e.g. by exposure to radioactivity), done in such a way that with a higher mutation rate, some “genes” do not function and are thus “knocked out.”

  12. See the similar case of freezing cellular organisms at different evolutionary stages (Griesemer and Yamashita 2005), while the case of Marey’s photographs is closer to Helmholtz’s intention to access unperceivably short intervals of time (Didi-Huberman 1990).

References

  • Adam, B. (1992). Modern times: The technology connection and its implications for social theory. Time & Society, 1, 175–191.

    Article  Google Scholar 

  • Allchin, D. (1999). Do we see through a social microscope? Credibility as a vicarious selector. Philosophy of Science, 60(proceedings), 287–298.

    Article  Google Scholar 

  • Auerbach, L. (1874). Organologische Studien 1: Zur Charakteristik und Lebensgeschichte der Zellkerne. Breslau: Morgenstern.

    Google Scholar 

  • Barty, I. R. (2005). Die Einführung der Standardzeit in Nordamerika. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 155–177). Berlin: Kadmos.

    Google Scholar 

  • Bischoff, T. (1854). Widerlegung der von Dr. Keber bei den Najaden und Dr. Nelson bei den Ascariden behaupteten Eindringens der Spermatozoiden in das Ei. Giessen: J. Ricker’sche Buchhandlung.

  • Bock von Wülfingen, B. (2009). Biology and the systems view. EMBO Reports, 10, 37–41.

  • Bock von Wülfingen, B. (2011). Economies and the cell. Conception and heredity around 1900 and 2000 (Habilitationsschrift, Humboldt-Universität zu Berlin).

  • Bock von Wülfingen, B. (2013). Freud’s ‘core of our being’ between cytology and psychoanalysis. Berichte zur Wissenschaftsgeschichte, 3, 226–244.

    Article  Google Scholar 

  • Boveri, T. (1889). Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. Sitzungsberichte der Gesellschaft für Morphologie und Physiologie in München, 5, 73–80.

    Google Scholar 

  • Bredekamp, H. (2005). Darwins Korallen: Frühe Evolutionsmodelle und die Tradition der Naturgeschichte. Berlin: Wagenbach.

    Google Scholar 

  • Castells, M. (1989). The information age: Economy. Malden, MA: Wiley.

    Google Scholar 

  • Clarke, E., & Jacyna, L. S. (1987). Nineteenth-century origins of neuroscientific concepts. Berkeley: University of California Press.

    Google Scholar 

  • Cooper, M. (2008). Life as surplus. Washington DC: University of Washington Press.

    Google Scholar 

  • Coulam, et al. (2007). Discordance among blastomeres renders preimplantation genetic diagnosis for neuploidy ineffective. Journal of Assisted Reproduction and Genetics, 24, 37–41.

    Article  Google Scholar 

  • Cremer, T., & Cremer, C. (2009). Rise, fall and resurrection of chromosome territories: A historical perspective. Part I. The rise of chromosome territories. European Journal of Histochemistry, 50(3), 161–176.

    Google Scholar 

  • Dahm, R. (2005). Friedrich Miescher and the discovery of DNA. Developmental Biology, 278, 274–288.

    Article  Google Scholar 

  • Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.

    Google Scholar 

  • De Chadarevian, S. (1994). Sehen und Aufzeichnen in der Botanik des 19. Jahrhunderts. In M. Wetzel & H. Wolf (Eds.), Der Entzug der Bilder (pp. 121–144). Visuelle Realitäten, Munich: Wilhelm Fink.

    Google Scholar 

  • Didi-Huberman, G. (1990). Devant l’image. Paris: Éditions de Minuit.

    Google Scholar 

  • Doane, M. A. (2005). Zeitlichkeit, Speicherung, Lesbarkeit. Freud, Marey und der Film. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 280–313). Berlin: Kadmos.

    Google Scholar 

  • Dowling, D. (1999). Experimenting on theories. Science in Context, 12(2), 261–273.

    Article  Google Scholar 

  • Drummond, A. E. (2006). The role of steroids in follicular growth. Reproductive Biology and Endocrinology, 4(16), 1–11.

    Google Scholar 

  • Ehrlich, P., & Lazarus, A. (1956). Histology of the blood: Normal and pathological. In F. Himmelweit, M. Marquardt, & H. Dale (Eds.), Collected papers of of Paul Ehrlich (Vol. 1, pp. 181–268). New York: Pergamon.

    Google Scholar 

  • Eisen, G. (1900). The spermatogenesis of batrachoseps. Journal of Morphology, 17, 1–117.

    Article  Google Scholar 

  • Elias, N. (1992). Time: An essay, trans. Jephcott E., Oxford: Blackwell.

  • Falk, R. (2006). Mendel’s impact. Science in Context, 19(2), 215–236.

    Article  Google Scholar 

  • Flemming, W. (1882). Zellsubstanz, Kern und Zelltheilung. Leipzig: F.C.W. Vogel.

    Google Scholar 

  • Fol, H. (1877). Sur le commencement de l’hénogénie chez divers animaux. Archives des sciences physiques et naturelles, 58, 439–472.

    Google Scholar 

  • Franklin, S. (2006). The cyborg embryo: Our path to transbiology. Theory, Culture, Society, 23, 167–186.

    Article  Google Scholar 

  • Franklin, S. (2007). Dolly mixtures: The remaking of genealogy. Durham, NC: Duke University Press.

    Book  Google Scholar 

  • Furnes, B., & Schimenti, J. (2007). Fast forward to new genes in mammalian reproduction. Journal of Physiology, 578(1), 25–32.

    Article  Google Scholar 

  • Galison, P. (2000). Einstein’s clocks: The place of time. Critical Inquiry, 26(2), 355–389.

    Article  Google Scholar 

  • Garlick, S. (2006). Mendel’s generation: Molecular sex and the informatic body. Body & Society, 12(4), 53–71.

    Article  Google Scholar 

  • Geraedts, J. (2011). Interview by author. Tape recording, June 26, 2011.

  • Gianaroli, L. (2011). Interview by author. Tape recording, June 8, 2011.

  • Giedion, S. (1987). Die Herrschaft der Mechanisierung: Ein Beitrag zur anonymen Geschichte. Frankfurt: Europäische Verlagsanstalt.

    Google Scholar 

  • Gooday, G. (1991). ‘Nature’ in the laboratory: Domestication and discipline with the microscope in victorian life science. The British Journal for the History of Science, 24(3), 307–341.

    Article  Google Scholar 

  • Griesemer J. (2002). Space⇔Time. Temporality and attention in iconographies of the living. In H. Schmidgen (Ed.), Experimental arcades: The materiality of time relations in life sciences, art, and technology (18301930). Preprint 226 (pp. 45–57). Berlin: Max Planck Institute for the History of Science.

  • Griesemer, J. R., & Wimsatt, W. C. (1989). Picturing Weismannism: A case study of conceptual evolution. In M. Ruse (Ed.), What the philosophy of biology is: Essays for David Hull (pp. 75–137). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Griesemer, J., & Yamashita, G. (2005). Zeitmanagement bei Modellsystemen. Beispiele aus der Evolutionsbiologie. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 280–313). Berlin: Kadmos.

    Google Scholar 

  • Hacking, I. (1985). Do we see through a microscope? In B. C. van Fraassen, P. M. Churchland, & C. A. Hooker (Eds.), Images of science (pp. 132–152). Chicago: Chicago University Press.

    Google Scholar 

  • Hennig, J. (2006). Die Versinnlichung des Unzugänglichen—Oberflächendarstellungen in der zeitgenössischen Mikroskopie. In M. Heßler (Ed.), Konstruierte Sichbarkeiten. Wissenschafts- und Technikbilder seit der frühen Neuzeit (pp. 99–116). Munich: Fink.

    Google Scholar 

  • Hertwig, O. (1875). Beiträge zur Erkenntnis der Bildung, Befruchtung und Theilung des thierischen Eies. Morphologisches Jahrbuch, 1, 347–432.

    Google Scholar 

  • Hine, C. (2006). Databases as scientific instruments and their role in the ordering of scientific work. Social Studies of Science, 36(2), 269–298.

    Article  Google Scholar 

  • Hopwood, N., Schaffer, S., & Secord, J. (2010). Seriality and scientific objects in the nineteenth century: Introduction. History of Science, 48, 251–285.

    Google Scholar 

  • Jacob, F. (1973). The logic of life. A history of heredity (B. Spillmann, Trans.). New York: Pantheon.

  • Jelinski, S. A., et al. (2007). The rat epididymal transcriptome: Comparison of segmental gene expression in the rat and mouse epididymides. Biology of Reproduction, 75(4), 561–570.

    Article  Google Scholar 

  • Kay, L. (2000). Who wrote the book of life? A History of the genetic code. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Keller, E. (2002). The century of the gene. Harvard: Harvard University Press.

    Google Scholar 

  • Keller, E. F. (2003). Models, simulation, and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Kitani, H. (Ed.). (2001). Foundations of systems biology. Cambridge, MA: MIT.

    Google Scholar 

  • Kittler, F. (1986). Gramophone, film, typewriter. Berlin: Brinkmann und Bose.

    Google Scholar 

  • Kölliker, A. (1895). Die Bedeutung der Zellenkerne für die Vorgänge der Vererbung. Zeitschrift für Wissenschaftliche Zoologie, 42(1), 3–50.

    Google Scholar 

  • Landecker, H. (2002). New times for biology: Nerve cultures and the advent of cellular life in vitro. Studies in History and Philosophy of Biological and Biomedical Sciences, 33, 667–694.

    Article  Google Scholar 

  • Landecker H. (2005). Living differently in time: Plasticity, temporality and cellular biotechnology. Culture Machine, 7. Retrieved September 25, 2013, from http://www.culturemachine.net/.

  • Landecker, H. (2007). Culturing life: How cells became technologies. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Latour, B. (1986). Visualization and cognition: Thinking with eyes and hands. In H. Kuklick (Ed.), Knowledge and society: studies in the sociology and culture past and present (Vol. 6, pp. 1–40). Greenwich, CT: JAI.

    Google Scholar 

  • Lepenies, W. (1976). Das Ende der Naturgeschichte: Wandel kultureller Selbstverständlichkeiten in den Wissenschaften des 18. und 19. Jahrhunderts. Munich: Hanser.

    Google Scholar 

  • Lin, Y. H., et al. (2005). Isochromosome of Yp in a man with sertoly-cell-only syndrome. Fertility and Sterility, 83(3), 764–766.

    Article  Google Scholar 

  • Liu, Z., et al. (2011). Comparative analysis on MRNA expression level and methylation status of DAZL gene between cattle yaks and their parents. Animal Reproductive Science, 126(3–4), 258–264.

    Article  Google Scholar 

  • Lynch, M. (1985). Discipline and the material form of images: An analysis of scientific visibility. Social Studies of Science, 15, 37–66.

    Article  Google Scholar 

  • Merz, M. (2006). Locating the dry lab on the lab map. In J. Lenhard, G. Küppers, & T. Shinn (Eds.), Simulation: Pragmatic constructions of reality (pp. 155–172). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Miescher, F. (1874). Das Protamin—Eine neue organische Basis aus den Samenfäden des Rheinlachses. Berichte der Deutschen Chemischen Gesesllschaft, 7, 376.

    Article  Google Scholar 

  • Morgan, M. S. (2003). Experiments without material intervention: Model experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 216–235). Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Morgan, M. S. (2005). Experiments versus models: New phenomena, inference and surprise. Journal of Economic Methodology, 12(2), 317–329.

    Article  Google Scholar 

  • Nowotny, H. (1993). Eigenzeit. Entstehung und Strukturierung eines Zeitgefühls. Frankfurt: Suhrkamp.

    Google Scholar 

  • Nowotny, H., & Testa, G. (2010). Naked genes. Reinventing the human in the molecular age. Cambridge, MA: MIT Press.

    Google Scholar 

  • Oxford English Dictionary. (2013). Retrieved September 25, 2013, from http://oxforddictionaries.com/ (entry “instrument”).

  • Ratcliff, M. J. (1999). Temporality, sequential iconography and linearity in figures: The impact of the discovery of division in infusoria. History and Philosophy of the Life Sciences, 21(3), 255–292.

    Google Scholar 

  • Rheinberger, H.-J. (1994). Experimental systems: Historiality, narration, and deconstruction. Science in Context, 7(1), 65–81.

    Google Scholar 

  • Rheinberger, H.-J. (2002). Experimentalsysteme und Epistemische Dinge. Göttingen: Wallstein.

    Google Scholar 

  • Rheinberger, H.-J., & Müller-Wille, S. (2009). Vererbung: Geschichte und Kultur eines biologischen Konzepts. Frankfurt: Fischer Taschenbuch.

    Google Scholar 

  • Rocket, J. C. (2001). Genomic and proteomic techniques applied to reproductive biology. Genome Biology, 2(9), 4020.1–4020.3.

    Google Scholar 

  • Schaffner, K. (2007). Theories, models, and equations in systems biology. In F. C. Boogerd, F. J. Bruggeman, J. S. Hofmeyr, & H. V. Westerhoff (Eds.), Toward a philosophy of systems biology (pp. 145–162). Amsterdam: Elsevier.

    Google Scholar 

  • Scherthan, H. (2001). A bouquet makes ends meet. Molecular Cell Biology, 2, 621–627.

    Google Scholar 

  • Schickore, J. (2007). The microscope and the eye: A history of reflections, 1740–1870. Chicago: University of Chicago Press.

    Google Scholar 

  • Schleiden, M. J. (1842). Grundzüge einer wissenschaftlichen Botanik. Leipzig: Engelmann.

    Google Scholar 

  • Schmidgen, H. (2002). Of frogs and men: The origins of psychophysiological time experiments, 1850–1865. Endeavour, 26(4), 142–148.

    Article  Google Scholar 

  • Schmidgen, H. (2004). Pictures, preparations, and living processes: The production of immediate visual perception (Anschauung) in late-19th-century physiology. Journal of the History of Biology, 37(3), 477–513.

    Article  Google Scholar 

  • Schmidgen, H. (2005). Die Donders-Maschine. Ein Kapitel Physiologiegeschichte mit Deleuze und Guattari. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 242–279). Berlin: Kadmos.

    Google Scholar 

  • Schmidgen, H. (2007). ”Zukunftsmaschinen,” Rechtsgeschichte—Legal history. Zeitschrift des Max-Planck-Instituts für Europäische Rechtsgeschichte, 10, 51–62.

    Google Scholar 

  • Sermon, K. (2011). Interview by author. Tape recording, May 26, 2011.

  • Shima, J. E., et al. (2004). The Murine testicular transcriptome: Characterising gene expression in the testis during the progression of spermatogenesis. Biology of Reproduction, 71, 319–330.

    Article  Google Scholar 

  • Stevens, N. M. (1905). Studies in spermatogenesis, with special reference to the “accessory chromosome”. Washington: Carnegie Institution of Washington. (Publication No. 36).

    Google Scholar 

  • Strelchenko, N., et al. (2006). Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reproductive BioMedicine Online, 12(1), 107–111.

    Article  Google Scholar 

  • Taub, L. (2011). Introduction. Reengaging with instruments. Isis, 102(4), 689–696.

    Article  Google Scholar 

  • Traweek, S. (1988). Beamtimes and lifetimes: The world of high energy physicists. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wachtel, S. S., Somkuti, S. G., & Schinfeld, J. S. (2000). Monozygotic twins of opposite sex. Cytogenetics and Cell Genetics, 91, 293–295.

    Article  Google Scholar 

  • Wahrig-Schmidt, B. (1994). Das ‘geistige Auge’ des Beobachters und die Bewegungen der vorherrschenden Gedankendinge. In M. Hagner, H.-J. Rheinberger, & B. Wahrig-Schmidt (Eds.), Objekte, Differenzen und Konjunkturen (pp. 23–47). Berlin: Akademie.

    Google Scholar 

  • Waldby, C. (2002). Stem cells, tissue cultures and the production of biovalue. Health, 6(3), 305–323.

    Google Scholar 

  • Wang, N., et al. (2011). Altered expression of armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal. Reproduction, 142(3), 401–408.

    Article  Google Scholar 

  • Wellmann, J. (2011). Science and cinema. Science in Context, 24(3), 311–328.

    Article  Google Scholar 

  • Wilkins-Haug, L. (2009). Epigenetics and assisted reproduction. Current Opinion in Obstetrics and Gynecology, 21(3), 201–206.

    Article  Google Scholar 

  • Wilson, E. B. (1895). An atlas of the fertilisation and karyokinesis of the ovum. New York: Columbia University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Bock von Wülfingen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock von Wülfingen, B. Observing temporal order in living processes: on the role of time in embryology on the cell level in the 1870s and post-2000. HPLS 37, 87–104 (2015). https://doi.org/10.1007/s40656-014-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40656-014-0054-6

Keywords

Navigation