Skip to main content
Log in

Optimization and Prediction of Specific Energy Consumption in Ball-End Milling of Ti-6Al-4V Alloy Under MQL and Cryogenic Cooling/Lubrication Conditions

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In nowadays, improve energy efficiency in the metal cutting industry is one of the main challenges. The selection of machining parameters and cooling/lubrication conditions is an important issue to assure better energy efficiency in the milling process. The present study explores the influence of three cutting parameters, namely, cooling/lubrication conditions, cutting speed and feed rate, on the energy consumption at ball-end end milling of Ti6-Al4-V. The main goal of this study is to increase the energy efficiency of the ball-end end milling process. To achieve this goal, techniques such as optimization and prediction of energy efficiency were used. The energy efficiency of the cutting process is defined through the specific energy consumption (SEC). In order to measure the total cutting power required to calculate the SEC, experiments were carried out in MQL and cryogenic conditions according to Taguchi’s L36 orthogonal array. Also, the Taguchi method was used to optimize the energy efficiency of this cutting process. The signal-to-noise ratio was applied to find the optimal levels of the cutting parameters to get the lowest value of SEC. Analysis of variance was employed to estimate the significance of control factors affecting SEC and to determine the experimental error. Finally, polynomial regression was utilized to formulate a mathematical model of the specific energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, Z. Y., Guo, Y. B., Sealy, M. P., & Liu, Z. Q. (2016). Energy consumption and process sustainability of hard milling with tool wear progression. Journal of Materials Processing Technology, 229, 305–312. https://doi.org/10.1016/j.jmatprotec.2015.09.032

    Article  Google Scholar 

  2. Sebastian, T. (2012). Energy efficiency in manufacturing systems. Sustainable production, life cycle engineering and management. Heidelberg: Springer.

    Google Scholar 

  3. Hong, M.-P., Kim, W.-S., Sung, J.-H., Kim, D.-H., Bae, K.-M., & Kim, Y.-S. (2018). High-performance eco-friendly trimming die manufacturing using heterogeneous material additive manufacturing technologies. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 133–142. https://doi.org/10.1007/s40684-018-0014-9

    Article  Google Scholar 

  4. Perdomo, I. L. F., Quiza, R., Haeseldonckx, D., & Rivas, M. (2020). Sustainable-focused multi-objective optimization of a turning process. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 1009–1018. https://doi.org/10.1007/s40684-019-00122-4

    Article  Google Scholar 

  5. IEA. 2020. Data and statistics. Paris, France: International Energy Agency. Accessed December 12, 2020, from https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Total%20final%20consumption%20(TFC)%20by%20sector

  6. Yi, Q., Ji, Q., Zhu, D., Jin, Y., & Li, L. (2020). Design optimization of lathe spindle system for optimum energy efficiency. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119536

    Article  Google Scholar 

  7. Cai, W., Liu, F., Zhou, X., & Xie, J. (2016). Fine energy consumption allowance of workpieces in the mechanical manufacturing industry. Energy, 114, 623–633. https://doi.org/10.1016/j.energy.2016.08.028

    Article  Google Scholar 

  8. Hu, L., Peng, C., Evans, S., Peng, T., Liu, Y., & Tang, R. (2017). Minimizing the machining energy consumption of a machining tool by sequencing the features of a part. Energy, 121, 292–305. https://doi.org/10.1016/j.energy.2017.01.039

    Article  Google Scholar 

  9. Xiao, Q., Li, C., Tang, Y., Li, L., & Li, L. (2019). A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning. Energy, 166, 142–156. https://doi.org/10.1016/j.energy.2018.09.191

    Article  Google Scholar 

  10. Rajemi, M.F. (2011). Energy analysis in turning and milling. Ph.D. thesis. The University of Manchester, Manchester.

  11. Gutowski, T., Dahmus, J., Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In 13th CIRP international conference on life cycle emgineering, Leuven, Belgium (pp. 623–627).

  12. Wang, H., Zhong, R. Y., Liu, G., Mu, W. L., Tian, X., & Leng, D. (2019). An optimization model for energy-efficient machining for sustainable production. Journal of Cleaner Production, 232, 1121–1133. https://doi.org/10.1016/j.jclepro.2019.05.271

    Article  Google Scholar 

  13. Yoon, H. S., Kim, E. S., Kim, M. S., Lee, J. Y., & Lee, B. G. (2015). Towards greener machine tools—a review on energy saving strategies and technologies. Renewable and Sustainable Energy Reviews., 48, 870–891. https://doi.org/10.1016/j.rser.2015.03.100

    Article  Google Scholar 

  14. Zhang, H., Deng, Z., Fu, Y., Wan, L., & Liu, W. (2017). Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption. Journal of Cleaner Production, 166, 1407–1414. https://doi.org/10.1016/j.jclepro.2017.08.022

    Article  Google Scholar 

  15. Wang, W., Tian, G., Chen, M., Tao, F., Zhang, C., Al-Ahmari, A., Li, Z., & Jiang, Z. (2020). Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118714

    Article  Google Scholar 

  16. Moreira, L. C., Li, W. D., Lu, X., & Fitzpatrick, M. E. (2019). Energy-efficient machining process analysis and optimisation based on BS EN24T alloy steel as case studies. Robotics and Computer Integrated Manufacturing, 58, 1–12. https://doi.org/10.1016/j.rcim.2019.01.011

    Article  Google Scholar 

  17. Zhou, L., Li, J., Li, F., Mendis, G., & Sutherland, J. W. (2018). Optimization parameters for energy efficiency in end milling. Procedia CIRP, 69, 312–317. https://doi.org/10.1016/j.procir.2017.12.005

    Article  Google Scholar 

  18. Nguyen, T.-T., Mia, M., Dang, X.-P., Le, C.-H., & Packianather, M. S. (2019). Green machining for the dry milling process of stainless steel 304. Proceedings of the Institution of Mechanical Engineers, Part B Journal of Engineering Manufacture, 234, 881–899. https://doi.org/10.1177/0954405419888126

    Article  Google Scholar 

  19. Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters—the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462–471. https://doi.org/10.1016/j.jclepro.2013.02.030

    Article  Google Scholar 

  20. Wang, Y. C., Kim, D. W., Katayama, H., & Hsueh, W. C. (2018). Optimization of machining economics and energy consumption in face milling operations. International Journal of Advanced Manufacturing Technology, 99, 2093–2100. https://doi.org/10.1007/s00170-018-1848-6

    Article  Google Scholar 

  21. Campatelli, G., Lorenzini, L., Scippa, A., Gianni, C., Lorenzo, L., & Antonio, S. (2014). Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. Journal of Cleaner Production, 66, 309–316. https://doi.org/10.1016/j.jclepro.2013.10.025

    Article  Google Scholar 

  22. Zhang, H., Deng, Z., Fu, Y., Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of Cleaner Production, 148, 174–184. https://doi.org/10.1016/j.jclepro.2017.01.077

    Article  Google Scholar 

  23. Nguyen, T.-T. (2019). Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement, 136, 525–544. https://doi.org/10.1016/j.measurement.2019.01.009

    Article  Google Scholar 

  24. Wang, B., Liu, Z., Song, Q., Wan, Y., & Shi, Z. (2016). Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. Journal of Cleaner Production, 129, 292–304. https://doi.org/10.1016/j.jclepro.2016.04.071

    Article  Google Scholar 

  25. Zhang, L., Zhang, B., Bao, H., & Huang, H. (2018). Optimization of cutiing parameters for minimizing environmental impact: Considering energy efficiency, noise emission and economic dimension. International Journal of Precision Engineering and Manufacturing, 19, 613–624. https://doi.org/10.1007/s12541-018-0074-3

    Article  Google Scholar 

  26. Chen, X., Li, C., Jin, Y., & Li, L. (2018). Optimize of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. International Journal of Advanced Manufacturing Technology, 96, 775–788. https://doi.org/10.1007/s00170-018-1647-0

    Article  Google Scholar 

  27. Albertelli, P., Keshari, A., & Matta, A. (2016). Energy oriented multi cutting parameter optimization in face milling. Journal of Cleaner Production, 137, 1602–1618. https://doi.org/10.1016/j.jclepro.2016.04.012

    Article  Google Scholar 

  28. Chen, X., Li, C., Tang, Y., Li, L., Du, Y., & Li, L. (2019). Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time. Energy, 175, 1021–1037. https://doi.org/10.1016/j.energy.2019.02.157

    Article  Google Scholar 

  29. Li, C., Xiao, Q., Tang, Y., & Li, L. (2016). A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production, 135, 263–275. https://doi.org/10.1016/j.jclepro.2016.06.097

    Article  Google Scholar 

  30. Han, F., Li, L., Cai, W., Li, C., Deng, X., & Sutherland, W. J. (2020). Parameters optimization considering the trade-off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121388

    Article  Google Scholar 

  31. Li, C., Chen, X., Tang, Y., & Li, L. (2017). Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. Journal of Cleaner Production, 140, 1805–1818. https://doi.org/10.1016/j.jclepro.2016.07.086

    Article  Google Scholar 

  32. Khan, A., Jamil, M., Salonitis, K., Sarfraz, S., Zhao, W., He, N., et al. (2019). Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies. https://doi.org/10.3390/en12040710

    Article  Google Scholar 

  33. Jang, D.-Y., Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 5–12. https://doi.org/10.1007/s40684-016-0001-y

    Article  Google Scholar 

  34. Jamil, M., Zhao, W., He, N., Kumar, M. G., Sarikaya, M., Khan, A. M., Sanjay, M. R., Siengchin, S., & Pimenov, D. Y. (2021). Sustainable milling of Ti-6Al-4V: A trade-off between energy efficiency, carbon emission and machining characteristics under MQL and cryogenic environment. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.125374

    Article  Google Scholar 

  35. Albertelli, P., & Monno, M. (2021). Energy assessment of different cooling technologies in Ti-6Al-4V milling. International Journal of Advanced Manufacturing Technology, 112, 3279–3306. https://doi.org/10.1007/s00170-020-06575-1

    Article  Google Scholar 

  36. Quintana, G., Ciurana, J., & Ribatallada, J. (2010). Surface roughness generation and material removal rate in ball end milling operations. Materials and Manufacturing Processes, 25(6), 386–398. https://doi.org/10.1080/1539445090299660

    Article  Google Scholar 

  37. Iqbal, A., Suhaimi, H., Zhao, W., Jamil, M., Nuaman, M. M., He, N., & Zaini, J. (2020). Sustainable milling of Ti-6Al-4V: Investigating the effects of milling orientation, cutter’s helix angle, and type of cryogenic coolant. Metals, 10(251), 1–25. https://doi.org/10.3390/met10020258

    Article  Google Scholar 

  38. Hanafi, I., Khamlich, A., Cabrera, M. F., Almansa, E., & Jabbouri, A. (2012). Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. Journal of Cleaner Production, 33, 1–9. https://doi.org/10.1016/j.jclepro.2012.05.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasa Tesic.

Ethics declarations

Conflict of interest

No conflict of interest exists for all participating authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesic, S., Cica, D., Borojevic, S. et al. Optimization and Prediction of Specific Energy Consumption in Ball-End Milling of Ti-6Al-4V Alloy Under MQL and Cryogenic Cooling/Lubrication Conditions. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1427–1437 (2022). https://doi.org/10.1007/s40684-021-00413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00413-9

Keywords

Navigation