Skip to main content
Log in

A Review of Physics-based Models in Prognostics and Health Management of Laminated Composite Structures

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This article reports on the physics-based models for the diagnosis (detection, isolation, localization, and quantification of damages) and prognosis (prediction of the future evolution of damages) of laminated composites. The model-based and data-driven prognostic strategies are compared, followed by a summary of the most common failure modes and the failure mechanisms of laminated composite materials. Then, an overview is provided of the measurement-based empirical/phenomenological and finite element-based damage evolution models for composite materials. The techniques reviewed in the former are Paris’s law and its modified versions, stiffness degradation models, Bayesian framework (Particle filters, Bayesian inference, dynamic Bayesian networks), and minimum strain energy theory. The finite element-based models overviewed failure criteria (Hashin, Puck, stress failure criteria) and damage propagation criteria (B-K criterion, equivalent strain/displacement criterion, strain rate-dependent damage model, cohesive zone modeling, De-Cohesive Law). Due to their complex failure modes, there is no generalized global solution for the diagnostics and prognostics of composite materials. The article will serve as guidelines for the physics-based prognostics and health management (PHM) of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

This is a review article which provides an overview of the physics-based approaches for prognosis of damage in laminated composites from the published literature. Since no measured data was used in the article, the authors would not be able to provide a data availability statement for this article.

Abbreviations

\(a\) :

Crack length

\(N\) :

Cumulative load/impact cycle

f(D L):

Functional form corresponding to loading conditions

∆K :

Range of stress intensity factor

∆G :

Range of energy release rate

X t :

Tensile failure stress of a lamina in fiber direction

X c :

Compressive failure stress of a lamina in fiber direction

Y t :

Tensile failure stress of a lamina normal fiber direction

Y c :

Compressive failure stress of a lamina normal fiber direction

S 12 :

Interlaminar shear strength

\({\sigma }_{m}^{max}\) :

Maximum principal stress

\({\sigma }_{m}^{mim}\) :

Minimum principal stress

\({\theta }_{m}^{max}\) :

Tensile angle of rotation for the matrix crack

\({\theta }_{m}^{mim}\) :

Compression angle of rotation for the matrix crack

\({\varepsilon }_{1T}\) :

Failure strain of a unidirectional layer in tension

\({\varepsilon }_{1C}\) :

Failure strain of a unidirectional layer in compression

νf12 :

Poisson’s ratio

m σf :

Mean stress magnification factor for the fibers in the × 2 direction

γ 21 :

Shear strain

References

  1. Choi, J. Y., Jeon, J. H., Lyu, J. H., et al. (2022). Current Applications and Development of Composite Manufacturing Processes for Future Mobility. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-022-00483-3

    Article  Google Scholar 

  2. Seo, J., Kim, D. Y., Kim, D. C., et al. (2021). Recent developments and challenges on machining of carbon fiber reinforced polymer composite laminates. International Journal of Precision Engineering and Manufacturing, 22, 2027–2044.

    Article  Google Scholar 

  3. Kim, D.-J., Lim, J., Nam, B., et al. (2021). Design and manufacture of automotive hybrid steel/carbon fiber composite b-pillar component with high crashworthiness. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 547–559.

    Article  Google Scholar 

  4. Khalid, M. Y., Arif, Z. U., & Al, R. A. (2022). Investigation of tensile and flexural behavior of green composites along with their impact response at different energies. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1399–1410.

    Article  Google Scholar 

  5. Khan, A., & Kim, H. S. (2022). A brief overview of delamination localization in laminated composites. Multiscale Science and Engineering, 4, 102–110.

    Article  Google Scholar 

  6. Hwang, S., An, Y.-K., Yang, J., et al. (2020). Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 699–712.

    Article  Google Scholar 

  7. Zimmermann, N., & Wang, P. H. (2020). A review of failure modes and fracture analysis of aircraft composite materials. Engineering Failure Analysis, 115, 104692.

    Article  Google Scholar 

  8. Khalid, S., & Kim, H. S. (2022). Recent studies on stress function-based approaches for the free edge stress analysis of smart composite laminates: a brief review. Multiscale Science and Engineering, 4, 73–78.

    Article  Google Scholar 

  9. Luo J, Namburu M, Pattipati K, et al. Model-based prognostic techniques [maintenance applications]. In: Proceedings AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference. Ieee, 2003, pp. 330–340.

  10. Schwabacher M. A survey of data-driven prognostics. In: Infotech@ Aerospace. 2005, p. 7002.

  11. Roh, H. D., Lee, H., & Park, Y.-B. (2016). Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 311–321.

    Article  Google Scholar 

  12. Khan, A., Shin, J. K., Lim, W. C., et al. (2020). A deep learning framework for vibration-based assessment of delamination in smart composite laminates. Sensors, 20, 2335.

    Article  Google Scholar 

  13. Daigle, M. J., & Goebel, K. (2011). A model-based prognostics approach applied to pneumatic valves. International Journal Progn Health Manag, 2, 84–99.

    Google Scholar 

  14. Khan, A., & Kim, H. S. (2022). Classification and prediction of multidamages in smart composite laminates using discriminant analysis. Mechanics of Advanced Materials and Structures, 29, 230–240.

    Article  Google Scholar 

  15. Khan, A., Hwang, H., & Kim, H. S. (2021). Synthetic data augmentation and deep learning for the fault diagnosis of rotating machines. Mathematics, 9, 2336.

    Article  Google Scholar 

  16. Svinth, C. N., Wallace, S., Stephenson, D. B., et al. (2022). Identifying Abnormal CFRP Holes Using Both Unsupervised and Supervised Learning Techniques on In-Process Force, Current, and Vibration Signals. International Journal of Precision Engineering and Manufacturing, 23, 609–625.

    Article  Google Scholar 

  17. Tsui, K. L., Chen, N., Zhou, Q., et al. (2015). Prognostics and health management: A review on data driven approaches. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/793161

    Article  Google Scholar 

  18. Guépié BK, Lecoeuche S. Similarity-based residual useful life prediction for partially unknown cycle varying degradation. In: 2015 IEEE Conference on Prognostics and Health Management (PHM). IEEE, 2015, pp. 1–7.

  19. Atamuradov, V., Medjaher, K., Dersin, P., et al. (2017). Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation. Int J Progn Health Manag, 8, 1–31.

    Google Scholar 

  20. Chu, C.-H., Lee, C.-J., & Yeh, H.-Y. (2020). Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/8814658

    Article  Google Scholar 

  21. Nguyen, D. V., Kefalas, M., Yang, K., et al. (2019). A review: Prognostics and health management in automotive and aerospace. Int J Progn Health Manag, 10, 35.

    Google Scholar 

  22. Zhang, L., Lin, J., Liu, B., et al. (2019). A review on deep learning applications in prognostics and health management. Ieee Access, 7, 162415–162438.

    Article  Google Scholar 

  23. Khan, A., Kim, J.-S., & Kim, H. S. (2021). Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer. Mathematics, 10, 80.

    Article  Google Scholar 

  24. Kim, S. W., Kong, J. H., Lee, S. W., et al. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: a review. International Journal of Precision Engineering and Manufacturing, 23, 111–129.

    Article  Google Scholar 

  25. Kim, D.-H., Ryu, C.-H., Park, S.-H., et al. (2017). Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy. Int J Precis Eng Manuf-Green Technol, 4, 211–219.

    Article  Google Scholar 

  26. Si, X.-S., Wang, W., Hu, C.-H., et al. (2011). Remaining useful life estimation–a review on the statistical data driven approaches. European Journal of Operational Research, 213, 1–14.

    Article  MathSciNet  Google Scholar 

  27. Medjaher, K., & Zerhouni, N. (2013). Hybrid prognostic method applied to mechatronic systems. International Journal of Advanced Manufacturing Technology, 69, 823–834.

    Article  Google Scholar 

  28. Baraldi, P., Cadini, F., Mangili, F., et al. (2013). Model-based and data-driven prognostics under different available information. Probabilistic Eng Mech, 32, 66–79.

    Article  Google Scholar 

  29. Kim N-H, An D, Choi J-H.2017 Prognostics and health management of engineering systems. Switz Springer Int Publ.

  30. Song, S., Xiong, C., Zheng, J., et al. (2021). Compression, bending, energy absorption properties, and failure modes of composite Kagome honeycomb sandwich structure reinforced by PMI foams. Composite Structures, 277, 114611.

    Article  Google Scholar 

  31. Nam, S., Lee, D. K., Jeong, Y.-K., et al. (2016). Environmental impact assessment of composite small craft manufacturing using the generic work breakdown structure. Int J Precis Eng Manuf-Green Technol, 3, 261–272.

    Article  Google Scholar 

  32. Greenhalgh E, Hiley M. Fractography of polymer composites: current status and future issues.

  33. Singh, R. K., & Chennamsetti, R. (2014). Propagation of Ao mode through the front edge of a delamination: Numerical and experimental studies. International Journal of Precision Engineering and Manufacturing, 15, 1639–1645.

    Article  Google Scholar 

  34. Xu, L. R., & Rosakis, A. J. (2002). Impact failure characteristics in sandwich structures: Part I: Basic failure mode selection. International Journal of Solids and Structures, 39, 4215–4235.

    Article  Google Scholar 

  35. Luo HA, Chen Y. Matrix cracking in fiber-reinforced composite materials.

  36. McCarthy, C., & Vaughan, T. (2015). Micromechanical failure analysis of advanced composite materials. Numerical Modelling of Failure in Advanced Composite Materials (pp. 379–409). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  37. Rebière, J.-L. (2014). Matrix cracking and delamination evolution in composite cross-ply laminates. Cogent Eng, 1, 943547.

    Article  Google Scholar 

  38. Groves, S. E., Harris, C. E., Highsmith, A. L., et al. (1987). An experimental and analytical treatment of matrix cracking in cross-ply laminates. Experimental Mechanics, 27, 73–79.

    Article  Google Scholar 

  39. Cantwell, W. J. (2007). Geometrical effects in the low velocity impact response of GFRP. Composites Science and Technology, 67, 1900–1908.

    Article  Google Scholar 

  40. Cantwell, W. J., & Morton, J. (1992). The significance of damage and defects and their detection in composite materials: A review. Journal of Strain Analysis for Engineering Design, 27, 29–42.

    Article  Google Scholar 

  41. Corbetta, M., Sbarufatti, C., Giglio, M., et al. (2018). A Bayesian framework for fatigue life prediction of composite laminates under co-existing matrix cracks and delamination. Composite Structures, 187, 58–70.

    Article  Google Scholar 

  42. Liu, X., Wang, B., Ai, F., et al. (2020). Evaluation of matrix cracking in composite laminates based on anomaly indices. International Journal of Fatigue, 140, 105841.

    Article  Google Scholar 

  43. Graham-Jones, J., & Summerscales, J. (2015). Marine applications of advanced fibre-reinforced composites. Cambridge: Woodhead Publishing.

    Google Scholar 

  44. Talreja, R., & Varna, J. (2015). Modeling damage, fatigue and failure of composite materials. Amsterdam: Elsevier.

    Google Scholar 

  45. Vitale, J. P., Francucci, G., Xiong, J., et al. (2017). Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Compos Part Appl Sci Manuf, 94, 217–225.

    Article  Google Scholar 

  46. Khan, R. (2019). Fiber bridging in composite laminates: a literature review. Composite Structures, 229, 111418.

    Article  Google Scholar 

  47. Das, A. K., Suthar, D., & Leung, C. K. (2019). Machine learning based crack mode classification from unlabeled acoustic emission waveform features. Cement and Concrete Research, 121, 42–57.

    Article  Google Scholar 

  48. Li, Y., Reese, S., & Simon, J.-W. (2018). Modeling the fiber bridging effect in cracked wood and paperboard using a cohesive zone model. Engineering Fracture Mechanics, 196, 83–97.

    Article  Google Scholar 

  49. Saeedifar, M., Fotouhi, M., Najafabadi, M. A., et al. (2016). Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission. Composites. Part B, Engineering, 85, 113–122.

    Article  Google Scholar 

  50. Greenhalgh, E. (2009). Failure analysis and fractography of polymer composites. Amsterdam: Elsevier.

    Book  Google Scholar 

  51. Khan, A., Khalid, S., Raouf, I., et al. (2021). Autonomous assessment of delamination using scarce raw structural vibration and transfer learning. Sensors, 21, 6239.

    Article  Google Scholar 

  52. Khan, A., Raouf, I., Noh, Y. R., et al. (2022). Autonomous assessment of delamination in laminated composites using deep learning and data augmentation. Composite Structures, 290, 115502.

    Article  Google Scholar 

  53. Chittala, T. S., Burela, R. G., & Ponnusami, S. A. (2021). Delamination Detection and Localization in Laminated Structures Using Machine Learning Techniques. Advances in Interdisciplinary Engineering (pp. 215–225). Singapore: Springer.

    Chapter  Google Scholar 

  54. Jacobs, E. W., Yang, C., Demir, K. G., et al. (2020). Vibrational detection of delamination in composites using a combined finite element analysis and machine learning approach. Journal of Applied Physics, 128, 125104.

    Article  Google Scholar 

  55. Khan, A., Ko, D.-K., Lim, S. C., et al. (2019). Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Composites. Part B, Engineering, 161, 586–594.

    Article  Google Scholar 

  56. Daneshjoo, Z., Shokrieh, M. M., & Fakoor, M. (2018). A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects. Theoretical and Applied Fracture Mechanics, 94, 46–56.

    Article  Google Scholar 

  57. Longbiao, L. (2017). Modeling first matrix cracking stress of fiber-reinforced ceramic-matrix composites considering fiber fracture. Theoretical and Applied Fracture Mechanics, 92, 24–32.

    Article  Google Scholar 

  58. Kazemi, M. E., Shanmugam, L., Lu, D., et al. (2019). Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Compos Part Appl Sci Manuf, 125, 105523.

    Article  Google Scholar 

  59. Ejaz, M., Azad, M. M., Shah, A. U. R., et al. (2020). Mechanical and Biodegradable Properties of Jute/Flax Reinforced PLA Composites. Fibers Polym, 21, 2635–2641.

    Article  Google Scholar 

  60. Huang, B.-T., Li, Q.-H., Xu, S.-L., et al. (2018). Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression. Materials and Design, 157, 457–468.

    Article  Google Scholar 

  61. Reifsnider, K. L. (2012). Fatigue of composite materials. Amsterdam: Elsevier.

    Google Scholar 

  62. Tao, C., Ji, H., Qiu, J., et al. (2017). Characterization of fatigue damages in composite laminates using Lamb wave velocity and prediction of residual life. Composite Structures, 166, 219–228.

    Article  Google Scholar 

  63. Highsmith AL, Reifsnider KL. 1982 Stiffness-reduction mechanisms in composite laminates. In: Damage in composite materials: basic mechanisms accumulation tolerance and characterization. ASTM International, Conshohocken

  64. Highsmith AL, Reifsnider KL. Damage in composite materials: basic mechanisms, accumulation, tolerance, and characterization. ASTM Int.

  65. Garrett, K. W., & Bailey, J. E. (1977). Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. Journal of Materials Science, 12, 157–168.

    Article  Google Scholar 

  66. Joffe, R., & Varna, J. (1999). Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90 layers. Composites Science and Technology, 59, 1641–1652.

    Article  Google Scholar 

  67. Schulte K. 1985 Stiffness reduction and development of longitudinal cracks during fatigue loading of composite laminates. Mech Characterisation Load Bear Fibre Compos Laminates; 36–54.

  68. Schulte K, Baron C, Neubert H, et al. DAMAGE DEVELOPMENT IN CARBON FIBRE EPOXY LAMINATES: CYCLIC LOADING.

  69. Schulte K. Fatigue Behaviour and Damage Development in Woven Fabric and Hybrid Fabric Composites, 1987. ICCM VI; 489–499.

  70. Nairn, J. A., & Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. International Journal of Fracture, 57, 1–24.

    Article  Google Scholar 

  71. O’Brien, T. K. (1985). Analysis of Local Delaminations and Their Influence on Composite Laminate Behavior. Delamination Debonding Mater. https://doi.org/10.1520/STP36310S

    Article  Google Scholar 

  72. Kelly, A., & Zweben, C. H. (2000). Comprehensive composite materials. Amsterdam: Elsevier.

    Google Scholar 

  73. Lee, L. J., Fu, K. E., & Yang, J. N. (1996). Prediction of fatigue damage and life for composite laminates under service loading spectra. Composites Science and Technology, 56, 635–648.

    Article  Google Scholar 

  74. Huang, J., Pastor, M.-L., Garnier, C., et al. (2019). A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates. International Journal of Fatigue, 120, 87–95.

    Article  Google Scholar 

  75. Li, X., Kupski, J., De Freitas, S. T., et al. (2020). Unfolding the early fatigue damage process for CFRP cross-ply laminates. International Journal of Fatigue, 140, 105820.

    Article  Google Scholar 

  76. Elenchezhian MRP. REAL-TIME MATERIAL STATE ASSESSMENT OF COMPOSITES USING ARTIFICIAL IN℡LIGENCE AND ITS CHALLENGES. PhD Thesis, 2021.

  77. Orifici, A. C., Thomson, R. S., Degenhardt, R., et al. (2009). A finite element methodology for analysing degradation and collapse in postbuckling composite aerospace structures. Journal of Composite Materials, 43, 3239–3263.

    Article  Google Scholar 

  78. Pineda, E. J., & Waas, A. M. (2012). Modelling progressive failure of fibre reinforced laminated composites: mesh objective calculations. Aeronautical Journal, 116, 1221–1246.

    Article  Google Scholar 

  79. PARIS PC. 1961 A rational analytic theory of fatigue. Trend Eng; 13: 9.

  80. Li, S., Sun, L., Jia, W., et al. (1995). The Paris law in metals and ceramics. Journal of Material Science Letters, 14, 1493–1495.

    Article  Google Scholar 

  81. Santecchia, E., Hamouda, A. M. S., Musharavati, F., et al. (2016). A Review on Fatigue life prediction methods for metals. Advances in Materials Science and Engineering, 2016, e9573524.

    Article  Google Scholar 

  82. Yao, L., Sun, Y., Guo, L., et al. (2018). A validation of a modified Paris relation for fatigue delamination growth in unidirectional composite laminates. Composites. Part B, Engineering, 132, 97–106.

    Article  Google Scholar 

  83. Raimondo, A., Doesburg, S. A., & Bisagni, C. (2020). Numerical study of quasi-static and fatigue delamination growth in a post-buckled composite stiffened panel. Composites. Part B, Engineering, 182, 107589.

    Article  Google Scholar 

  84. Asp, L. E., Sjögren, A., & Greenhalgh, E. S. (2001). Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading. Journal of Composites Technology and Research, 23, 55–68.

    Article  Google Scholar 

  85. Schön, J. (2000). A model of fatigue delamination in composites. Composites Science and Technology, 60, 553–558.

    Article  Google Scholar 

  86. Li, Y., Kurfess, T. R., & Liang, S. Y. (2000). Stochastic prognostics for rolling element bearingS. Mechanical Systems and Signal Processing, 14, 747–762.

    Article  Google Scholar 

  87. Li, Y., Billington, S., Zhang, C., et al. (1999). Adaptive prognostics for rolling element bearing condition. Mechanical Systems and Signal Processing, 13, 103–113.

    Article  Google Scholar 

  88. Peel L. Data driven prognostics using a Kalman filter ensemble of neural network models. In: 2008 International Conference on Prognostics and Health Management. 2008, pp. 1–6.

  89. Melgar, M., Gomez-Jimenez, C., Cot, L. D., et al. (2016). Paris law parameter identification based on the extended Kalman Filter. MATEC Web Conf, 83, 03003.

    Article  Google Scholar 

  90. Wang, Y., Binaud, N., Gogu, C., et al. (2016). Determination of Paris’ law constants and crack length evolution via Extended and Unscented Kalman filter: An application to aircraft fuselage panels. Mechanical Systems and Signal Processing, 80, 262–281.

    Article  Google Scholar 

  91. Corbetta M, Sbarufatti C, Manes A, et al. Sequential Monte Carlo sampling for crack growth prediction providing for several uncertainties. PHM Soc Eur Conf; 2. Epub ahead of print 2014. DOI: https://doi.org/10.36001/phme.2014.v2i1.1475.

  92. Saha, B., Goebel, K., & Christophersen, J. (2009). Comparison of prognostic algorithms for estimating remaining useful life of batteries. Transactions of the Institute of Measurement and Control, 31, 293–308.

    Article  Google Scholar 

  93. Pascoe, J. A., Alderliesten, R. C., & Benedictus, R. (2013). Methods for the prediction of fatigue delamination growth in composites and adhesive bonds – a critical review. Engineering Fracture Mechanics, 112–113, 72–96.

    Article  Google Scholar 

  94. Bak, B. L. V., Sarrado, C., Turon, A., et al. (2014). Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods. Applied Mechanics Reviews. https://doi.org/10.1115/1.4027647

    Article  Google Scholar 

  95. Chiachío, J., Chiachío, M., Saxena, A., et al. (2015). Bayesian model selection and parameter estimation for fatigue damage progression models in composites. International Journal of Fatigue, 70, 361–373.

    Article  Google Scholar 

  96. Chiach ́ıo J, Chiach ́ıo M, Saxena A, et al. 2013 An Energy-Based Prognostic Framework to Predict Fatigue Damage Evolution in Composites. Annu Conf PHM Soc. https://doi.org/10.36001/phmconf.2013.v5i1.2273.

  97. Peng, T., Liu, Y., Saxena, A., et al. (2015). In-situ fatigue life prognosis for composite laminates based on stiffness degradation. Composite Structures, 132, 155–165.

    Article  Google Scholar 

  98. Rabiei E, Lopez Droguett E, Modarres M. Damage monitoring and prognostics in composites via dynamic Bayesian networks. In: 2017 Annual Reliability and Maintainability Symposium (RAMS). 2017, pp. 1–7.

  99. Banerjee, P., Karpenko, O., Udpa, L., et al. (2018). Prediction of impact-damage growth in GFRP plates using particle filtering algorithm. Composite Structures, 194, 527–536.

    Article  Google Scholar 

  100. Pugalenthi, K., Trung Duong, P. L., Doh, J., et al. (2021). Online prognosis of bimodal crack evolution for fatigue life prediction of composite laminates using particle filters. Applied Sciences, 11, 6046.

    Article  Google Scholar 

  101. Daneshjoo, Z., Shokrieh, M. M., Fakoor, M., et al. (2018). A new mixed mode I/II failure criterion for laminated composites considering fracture process zone. Theoretical and Applied Fracture Mechanics, 98, 48–58.

    Article  Google Scholar 

  102. Pascoe, J. A., Alderliesten, R. C., & Benedictus, R. (2015). On the relationship between disbond growth and the release of strain energy. Engineering Fracture Mechanics, 133, 1–13.

    Article  Google Scholar 

  103. Jones, R., Stelzer, S., & Brunner, A. J. (2014). Mode I, II and Mixed Mode I/II delamination growth in composites. Composite Structures, 110, 317–324.

    Article  Google Scholar 

  104. Andersons, J., Hojo, M., & Ochiai, S. (2004). Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates. International Journal of Fatigue, 26, 597–604.

    Article  Google Scholar 

  105. Ramkumar RL. Performance of a Quantitative Study of Instability-Related Delamination Growth. NORTHROP CORP HAWTHORNE CA AIRCRAFT DIV, https://apps.dtic.mil/sti/citations/ADA305939 (1 March 1983, accessed 6 October 2021).

  106. Robinson, E. I., Marzat, J., & Raïssi, T. (2018). Filtering and uncertainty propagation methods for model-based prognosis of fatigue crack growth in unidirectional fiber-reinforced composites. ASCE-ASME J Risk Uncertain Eng Syst Part Civ Eng, 4, 04018040.

    Article  Google Scholar 

  107. Adden, S., & Horst, P. (2010). Stiffness degradation under fatigue in multiaxially loaded non-crimped-fabrics. International Journal of Fatigue, 32, 108–122.

    Article  Google Scholar 

  108. Anyfantis, K. N., & Tsouvalis, N. G. (2012). Post buckling progressive failure analysis of composite laminated stiffened panels. Applied Composite Materials, 19, 219–236.

    Article  Google Scholar 

  109. Kashtalyan, M., & Soutis, C. (2016). Modelling of stiffness degradation due to cracking in laminates subjected to multi-axial loading. Philos Trans R Soc Math Phys Eng Sci, 374, 20160017.

    Google Scholar 

  110. Barbero, E. J. (2007). Finite Element Analysis of Composite Materials. CRC Press.

    Google Scholar 

  111. Führer, T. (2017). Stiffness degradation of composite skin fields due to strength and buckling onset. Thin-Walled Struct, 119, 522–530.

    Article  Google Scholar 

  112. Abir, M. R., Tay, T. E., Ridha, M., et al. (2017). Modelling damage growth in composites subjected to impact and compression after impact. Composite Structures, 168, 13–25.

    Article  Google Scholar 

  113. Hashin, Z. (1980). Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47, 329–334.

    Article  MATH  Google Scholar 

  114. Puck, A., & Schürmann, H. (2004). Chapter 5.6 - Failure analysis of FRP laminates by means of physically based phenomenological models. In M. J. Hinton, A. S. Kaddour, & P. D. Soden (Eds.), Failure Criteria in Fibre-Reinforced-Polymer Composites (pp. 832–876). Oxford: Elsevier.

    Chapter  Google Scholar 

  115. Lopez, R. H., Luersen, M. A., & Cursi, E. S. (2009). Optimization of laminated composites considering different failure criteria. Composites. Part B, Engineering, 40, 731–740.

    Article  Google Scholar 

  116. Reddy, J. N. (2003). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (2nd ed.). Rome: CRC Press.

    Book  Google Scholar 

  117. Lee, M. S., Seo, H. Y., & Kang, C. G. (2016). Comparative study on mechanical properties of CR340/CFRP composites through three point bending test by using theoretical and experimental methods. Int J Precis Eng Manuf-Green Technol, 3, 359–365.

    Article  Google Scholar 

  118. Zhao, L., Qin, T., Zhang, J., et al. (2013). Modified maximum stress failure criterion for composite π joints. Journal of Composite Materials, 47, 2995–3008.

    Article  Google Scholar 

  119. Lee, C.-S., Kim, J.-H., Kim, S., et al. (2015). Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Composite Structures, 121, 406–419.

    Article  Google Scholar 

  120. Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56, 439–449.

    Article  Google Scholar 

  121. Yetman, J. E., Sobey, A. J., Blake, J. I. R., et al. (2015). Investigation into skin stiffener debonding of top-hat stiffened composite structures. Composite Structures, 132, 1168–1181.

    Article  Google Scholar 

  122. Liu, P. F., & Zheng, J. Y. (2010). Recent developments on damage modeling and finite element analysis for composite laminates: a review. Materials and Design, 31, 3825–3834.

    Article  Google Scholar 

  123. Tay, T. E., Liu, G., Tan, V. B. C., et al. (2008). Progressive failure analysis of composites. Journal of Composite Materials, 42, 1921–1966.

    Article  Google Scholar 

  124. Liu, P. F., & Zheng, J. Y. (2008). Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Materials Science and Engineering A, 485, 711–717.

    Article  Google Scholar 

  125. Maimi, P., Mayugo, J. A., & Camanho pp. (2008). A Three-dimensional damage model for transversely isotropic composite laminates. Journal of Composite Materials., 42, 2717–2745.

    Article  Google Scholar 

  126. Ubaid, J., Kashfuddoja, M., & Ramji, M. (2014). Strength prediction and progressive failure analysis of carbon fiber reinforced polymer laminate with multiple interacting holes involving three dimensional finite element analysis and digital image correlation. International Journal of Damage Mechanics, 23, 609–635.

    Article  Google Scholar 

  127. Zhang, B. M., & Zhao, L. (2012). Progressive damage and failure modeling in fiber-reinforced laminated composites containing a hole. International Journal of Damage Mechanics, 21, 893–911.

    Article  Google Scholar 

  128. Shabani, P., Taheri-Behrooz, F., Maleki, S., et al. (2019). Life prediction of a notched composite ring using progressive fatigue damage models. Composites. Part B, Engineering, 165, 754–763.

    Article  Google Scholar 

  129. Li, X., Ma, D., Liu, H., et al. (2019). Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Composite Structures, 207, 727–739.

    Article  Google Scholar 

  130. Wang, K., Zhao, L., Hong, H., et al. (2018). A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates. Composite Structures, 201, 995–1003.

    Article  Google Scholar 

  131. Xu, J., & El Mansori, M. (2016). Numerical modeling of stacked composite CFRP/Ti machining under different cutting sequence strategies. International Journal of Precision Engineering and Manufacturing, 17, 99–107.

    Article  Google Scholar 

  132. Hosseini-Toudeshky, H., Goodarzi, M. S., & Mohammadi, B. (2013). Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law. Structural Engineering and Mechanics, 48, 41–56.

    Article  Google Scholar 

  133. Hosseini-Toudeshky, H., Jahanmardi, M., & Goodarzi, M. S. (2015). Progressive debonding analysis of composite blade root joint of wind turbines under fatigue loading. Composite Structures, 120, 417–427.

    Article  Google Scholar 

  134. Naderi, M., & Iyyer, N. (2020). Micromechanical analysis of damage mechanisms under tension of 0°–90° thin-ply composite laminates. Composite Structures, 234, 111659.

    Article  Google Scholar 

  135. Yang, Y., Liu, X., Wang, Y.-Q., et al. (2017). A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Composites Science and Technology, 151, 85–93.

    Article  Google Scholar 

  136. Jalalvand, M., Wisnom, M. R., Hosseini-Toudeshky, H., et al. (2014). Experimental and numerical study of oblique transverse cracking in cross-ply laminates under tension. Compos Part Appl Sci Manuf, 67, 140–148.

    Article  Google Scholar 

  137. Mahmoud, B., Manseri, L., Rogani, A., et al. (2019). Experimental and numerical study of the damage mechanisms in hybrid unidirectional/woven composites under impact loading. Composite Structures, 209, 606–615.

    Article  Google Scholar 

  138. Wang, C. (2020). Transverse crack evolution modeling of cross-ply laminates with a single layer of phantom node intraply elements for identically-oriented ply groups. Composite Structures, 254, 112842.

    Article  Google Scholar 

  139. Meng, M., Le, H. R., Rizvi, M. J., et al. (2015). 3D FEA modelling of laminated composites in bending and their failure mechanisms. Composite Structures, 119, 693–708.

    Article  Google Scholar 

  140. Im, J.-M., Kang, S.-G., Shin, K.-B., et al. (2017). Prediction of onset and propagation of damage in the adhesive joining of a dome-separated composite pressure vessel including temperature effects. International Journal of Precision Engineering and Manufacturing, 18, 1795–1804.

    Article  Google Scholar 

  141. Akhavan-Safar, A., Monteiro, J., Carbas, R., et al. (2020). Tensile fatigue life prediction of adhesively bonded structures based on CZM technique and a modified degradation approach. Proc Inst Mech Eng Part G J Aerosp Eng, 234, 1988–1999.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1A2C1006613), funded by the Ministry of Education, and also supported by the Ministry of Trade, Industry, and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT), through the International Cooperative R&D program (Project No. P0011923 and P0016173), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Azad, M.M., Sohail, M. et al. A Review of Physics-based Models in Prognostics and Health Management of Laminated Composite Structures. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1615–1635 (2023). https://doi.org/10.1007/s40684-023-00509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00509-4

Keywords

Navigation