Skip to main content

Advertisement

Log in

Membrane Distillation for Strategic Water Treatment Applications: Opportunities, Challenges, and Current Status

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Membrane distillation (MD) has been known as a promising water treatment process for many years. However, despite its advantages, MD has never been able to compete with other processes for industrial water treatment and supply. Instead, it has been orientated towards several unique strategic water treatment applications. This review aims to uncover the opportunities and technical challenges pertinent to the MD process and the current status of its strategic water treatment applications most notably including decentralised small-scale desalination for fresh water provision in remote areas, hybridisation with forward osmosis (FO) for treatment of challenging polluted waters, regeneration of liquid desiccant solutions for air conditioning, and treatment of acid effluents for beneficial reuse.

Recent Findings

Pilot and small-scale MD systems have been demonstrated for decentralised desalination using various renewable energy sources to supply fresh water in remote, rural areas and on ships where other desalination processes are inefficient or unfeasible. For this strategic desalination application, MD is technically viable, but more works on configuration modification and process optimisation are required to reduce the process energy consumption and water production costs. For the three other strategic applications, the technical viability of the MD process has been proved by extensive lab-scale researches, but its economic feasibility is still questionable due to the lack of large-scale evaluation and the uncertain costs of MD systems.

Summary

The orientation of MD towards strategic water treatment applications is clear. However, huge efforts are required to facilitate these applications at commercial and full scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas N, Mavukkandy MO, Loutatidou S, Arafat HA. Membrane distillation research & implementation: lessons from the past five decades. Sep Purif Technol. 2017;189:108–27.

    CAS  Google Scholar 

  2. Naidu G, Tijing L, Johir MAH, Shon H, Vigneswaran S. Hybrid membrane distillation: resource, nutrient and energy recovery. J Membr Sci. 2020;599:117832.

    CAS  Google Scholar 

  3. González D, Amigo J, Suárez F. Membrane distillation: perspectives for sustainable and improved desalination. Renew Sust Energ Rev. 2017;80:238–59.

    Google Scholar 

  4. Ghaffour N, Soukane S, Lee JG, Kim Y, Alpatova A. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Appl Energy. 2019;254:113698.

    CAS  Google Scholar 

  5. Choudhury MR, Anwar N, Jassby D, Rahaman MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process – a review. Adv Colloid Interf Sci. 2019;269:370–99.

    CAS  Google Scholar 

  6. Chew NGP, Zhao S, Wang R. Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interf Sci. 2019;273:102022.

    CAS  Google Scholar 

  7. Adham S, Hussain A, Minier-Matar J, Janson A, Sharma R. Membrane applications and opportunities for water management in the oil & gas industry. Desalination. 2018;440:2–17.

    CAS  Google Scholar 

  8. Duong HC, Ansari AJ, Nghiem LD, Pham TM, Pham TD. Low carbon desalination by innovative membrane materials and processes. Curr Pollut Rep. 2018;4:251–64.

    CAS  Google Scholar 

  9. Duong HC, Ansari AJ, Nghiem LD, Cao HT, Vu TD, Nguyen TP. Membrane processes for the regeneration of liquid desiccant solution for air conditioning. Curr Pollut Rep. 2019;5:308–18.

    Google Scholar 

  10. Li Q, Beier L-J, Tan J, Brown C, Lian B, Zhong W, et al. An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl Energy. 2019;237:534–48.

    CAS  Google Scholar 

  11. Gopi G, Arthanareeswaran G, Ismail AF. Perspective of renewable desalination by using membrane distillation. Chem Eng Res Des. 2019;144:520–37.

    CAS  Google Scholar 

  12. Dow N, Gray S, Li J-d, Zhang J, Ostarcevic E, Liubinas A, et al. Pilot trial of membrane distillation driven by low grade waste heat: membrane fouling and energy assessment. Desalination. 2016.

  13. Zaragoza G, Ruiz-Aguirre A, Guillén-Burrieza E. Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Appl Energy. 2014;130:491–9.

    Google Scholar 

  14. Chafidz A, Al-Zahrani S, Al-Otaibi MN, Hoong CF, Lai TF, Prabu M. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination. 2014;345:36–49.

    CAS  Google Scholar 

  15. Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD. Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination. 2015;374:1–9.

    CAS  Google Scholar 

  16. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.

    CAS  Google Scholar 

  17. Mavukkandy MO, Chabib CM, Mustafa I, Al GA, AlMarzooqi F. Brine management in desalination industry: from waste to resources generation. Desalination. 2019;472:114187.

    CAS  Google Scholar 

  18. Ruiz Salmón I, Luis P. Membrane crystallization via membrane distillation. Chem Eng Process Process Intensif. 2018;123:258–71.

    Google Scholar 

  19. Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD. Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Sep Purif Technol. 2016;166:55–62.

    CAS  Google Scholar 

  20. Ruiz-Aguirre A, Andrés-Mañas JA, Fernández-Sevilla JM, Zaragoza G. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Sep Purif Technol. 2018;205:212–22.

    CAS  Google Scholar 

  21. Duong HC, Duke M, Gray S, Cooper P, Nghiem LD. Membrane scaling and prevention techniques during seawater desalination by air gap membrane distillation. Desalination. 2016;397:92–100.

    CAS  Google Scholar 

  22. Wang P, Chung T-S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci. 2015;474:39–56.

    CAS  Google Scholar 

  23. Drioli E, Ali A, Macedonio F. Membrane distillation: recent developments and perspectives. Desalination. 2015;356:56–84.

    CAS  Google Scholar 

  24. Wang Z, Chen Y, Sun X, Duddu R, Lin S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J Membr Sci. 2018;559:183–95.

    CAS  Google Scholar 

  25. Rezaei M, Warsinger DM, Lienhard VJH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Res. 2018;139:329–52.

    CAS  Google Scholar 

  26. Wang Z, Lin S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 2017;112:38–47.

    Google Scholar 

  27. Franken ACM, Nolten JAM, Mulder MHV, Bargeman D, Smolders CA. Wetting criteria for the applicability of membrane distillation. J Membr Sci. 1987;33:315–28.

    CAS  Google Scholar 

  28. Khayet M, Li NN, Fane AG, Ho WSw. Membrane Distillation, Advance Membrane Technology and Applications, John Wiley, New Jersey 2008.

  29. Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang S-m. The state of desalination and brine production: a global outlook. Sci Total Environ. 2019;657:1343–56.

    CAS  Google Scholar 

  30. Duong HC, Tran TL, Ansari AJ, Cao HT, Vu TD, Do KU. Advances in membrane materials and processes for desalination of brackish water. Curr Pollut Rep. 2019;5:319–36.

    CAS  Google Scholar 

  31. Hejazi M-AA, Bamaga OA, Al-Beirutty MH, Gzara L, Abulkhair H. Effect of intermittent operation on performance of a solar-powered membrane distillation system. Sep Purif Technol. 2019;220:300–8.

    CAS  Google Scholar 

  32. Kim Y-D, Thu K, Ghaffour N, Choon NK. Performance investigation of a solar-assisted direct contact membrane distillation system. J Membr Sci. 2013;427:345–64.

    CAS  Google Scholar 

  33. Raluy RG, Schwantes R, Subiela VJ, Peñate B, Melián G, Betancort JR. Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination. 2012;290:1–13.

    CAS  Google Scholar 

  34. Mericq J-P, Laborie S, Cabassud C. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chem Eng J. 2011;166:596–606.

    CAS  Google Scholar 

  35. Koschikowski J, Wieghaus M, Rommel M, Ortin VS, Suarez BP, Betancort Rodríguez JR. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination. 2009;248:125–31.

    CAS  Google Scholar 

  36. Blanco GJ, García-Rodríguez L, Martín-Mateos I. Seawater desalination by an innovative solar-powered membrane distillation system: the MEDESOL project. Desalination. 2009;246:567–76.

    Google Scholar 

  37. Fath HES, Elsherbiny SM, Hassan AA, Rommel M, Wieghaus M, Koschikowski J, et al. PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs. Desalination. 2008;225:58–69.

    CAS  Google Scholar 

  38. Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination. 2007;217:17–28.

    CAS  Google Scholar 

  39. Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Desalination by a “compact SMADES” autonomous solar-powered membrane distillation unit. Desalination. 2007;217:29–37.

    CAS  Google Scholar 

  40. Koschikowski J, Wieghaus M, Rommel M. Solar thermal-driven desalination plants based on membrane distillation. Desalination. 2003;156:295–304.

    CAS  Google Scholar 

  41. Winter D, Koschikowski J, Wieghaus M. Desalination using membrane distillation: experimental studies on full scale spiral wound modules. J Membr Sci. 2011;375:104–12.

    CAS  Google Scholar 

  42. Kim Y-D, Thu K, Choi S-H. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination. 2015;367:161–71.

    CAS  Google Scholar 

  43. Duong HC, Chivas AR, Nelemans B, Duke M, Gray S, Cath TY, et al. Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation - a pilot study. Desalination. 2015;366:121–9.

    CAS  Google Scholar 

  44. Banat F, Jwaied N. Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination. 2008;220:566–73.

    CAS  Google Scholar 

  45. Al-Karaghouli A, Kazmerski LL. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev. 2013;24:343–56.

    CAS  Google Scholar 

  46. Ali MT, Fath HES, Armstrong PR. A comprehensive techno-economical review of indirect solar desalination. Renew Sust Energ Rev. 2011;15:4187–99.

    CAS  Google Scholar 

  47. Andrés-Mañas JA, Ruiz-Aguirre A, Acién FG, Zaragoza G. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination. 2018;443:110–21.

    Google Scholar 

  48. Sarbatly R, Chiam C-K. Evaluation of geothermal energy in desalination by vacuum membrane distillation. Appl Energy. 2013;112:737–46.

    CAS  Google Scholar 

  49. Bouguecha S, Dhahbi M. Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination. Desalination. 2002;152:237–44.

    Google Scholar 

  50. Xu Y, Zhu B-k, Xu Y-y. Pilot test of vacuum membrane distillation for seawater desalination on a ship. Desalination. 2006;189:165–9.

    CAS  Google Scholar 

  51. Amaya-Vías D, Nebot E, López-Ramírez JA. Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels. Desalination. 2018;429:44–51.

    Google Scholar 

  52. Ang WL, Wahab MA, Johnson D, Hilal N. Forward osmosis research trends in desalination and wastewater treatment: a review of research trends over the past decade. J Water Process Eng. 2019;31:100886.

    Google Scholar 

  53. Chung T-S, Zhang S, Wang KY, Su J, Ling MM. Forward osmosis processes: uesterday, today and tomorrow. Desalination. 2012;287:78–81.

    CAS  Google Scholar 

  54. Cath TY, Childress AE, Elimelech M. Forward osmosis: principles, applications, and recent developments. J Membr Sci. 2006;281:70–87.

    CAS  Google Scholar 

  55. Ansari AJ, Hai FI, Guo W, Ngo HH, Price WE, Nghiem LD. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater. Bioresour Technol. 2015;191:30–6.

    CAS  Google Scholar 

  56. Shaffer DL, Werber JR, Jaramillo H, Lin S, Elimelech M. Forward osmosis: Where are we now? Desalination. 2015;356:271–84.

    CAS  Google Scholar 

  57. Li M, Li K, Wang L, Zhang X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation. Water Res. 2020;172:115488.

    CAS  Google Scholar 

  58. Ang WL, Mohammad AW, Johnson D, Hilal N. Unlocking the application potential of forward osmosis through integrated/hybrid process. Sci Total Environ. 2020;706:136047.

    CAS  Google Scholar 

  59. Suwaileh W, Johnson D, Jones D, Hilal N. An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: a combined experimental and theoretical approach. Desalination. 2019;471:114126.

    CAS  Google Scholar 

  60. Ricci BC, Skibinski B, Koch K, Mancel C, Celestino CQ, Cunha ILC, et al. Critical performance assessment of a submerged hybrid forward osmosis - membrane distillation system. Desalination. 2019;468:114082.

    CAS  Google Scholar 

  61. An X, Hu Y, Wang N, Zhou Z, Liu Z. Continuous juice concentration by integrating forward osmosis with membrane distillation using potassium sorbate preservative as a draw solute. J Membr Sci. 2019;573:192–9.

    CAS  Google Scholar 

  62. Nguyen NC, Chen S-S, Ho S-T, Nguyen HT, Ray SS, Nguyen NT, et al. Optimising the recovery of EDTA-2Na draw solution in forward osmosis through direct contact membrane distillation. Sep Purif Technol. 2018;198:108–12.

    CAS  Google Scholar 

  63. Zhou Y, Huang M, Deng Q, Cai T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination. 2017;420:99–105.

    CAS  Google Scholar 

  64. Zhang S, Wang P, Fu X, Chung T-S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Res. 2014;52:112–21.

    CAS  Google Scholar 

  65. Volpin F, Chekli L, Phuntsho S, Ghaffour N, Vrouwenvelder JS, Shon HK. Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine. Sep Purif Technol. 2019;212:368–75.

    CAS  Google Scholar 

  66. Liu Q, Liu C, Zhao L, Ma W, Liu H, Ma J. Integrated forward osmosis-membrane distillation process for human urine treatment. Water Res. 2016;91:45–54.

    CAS  Google Scholar 

  67. Nguyen NC, Nguyen HT, Ho S-T, Chen S-S, Ngo HH, Guo W, et al. Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Sci Total Environ. 2016;557-558:44–50.

    CAS  Google Scholar 

  68. Nguyen NC, Duong HC, Nguyen HT, Chen S-S, Le HQ, Ngo HH, et al. Forward osmosis–membrane distillation hybrid system for desalination using mixed trivalent draw solution. J Membr Sci. 2020;603:118029.

    CAS  Google Scholar 

  69. Hau NT, Chen S-S, Nguyen NC, Huang KZ, Ngo HH, Guo W. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. J Membr Sci. 2014;455:305–11.

    Google Scholar 

  70. Zohrabian L, Hankins NP, Field RW. Hybrid forward osmosis-membrane distillation system: demonstration of technical feasibility. J Water Process Eng. 2020;33:101042.

    Google Scholar 

  71. Islam MS, Touati K, Rahaman MS. Feasibility of a hybrid membrane-based process (MF-FO-MD) for fracking wastewater treatment. Sep Purif Technol. 2019;229:115802.

    CAS  Google Scholar 

  72. Chekli L, Phuntsho S, Kim JE, Kim J, Choi JY, Choi J-S, et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects. J Membr Sci. 2016;497:430–49.

    CAS  Google Scholar 

  73. Chen X, Riffat S, Bai H, Zheng X, Reay D. Recent progress in liquid desiccant dehumidification and air-conditioning: a review. Energy Built Environ. 2020;1:106–30.

    Google Scholar 

  74. Gurubalan A, Maiya MP, Geoghegan PJ. A comprehensive review of liquid desiccant air conditioning system. Appl Energy. 2019;254:113673.

    Google Scholar 

  75. Fekadu G, Subudhi S. Renewable energy for liquid desiccants air conditioning system: a review. Renew Sust Energ Rev. 2018;93:364–79.

    CAS  Google Scholar 

  76. Abdel-Salam AH, Simonson CJ. State-of-the-art in liquid desiccant air conditioning equipment and systems. Renew Sust Energ Rev. 2016;58:1152–83.

    Google Scholar 

  77. Yin Y, Qian J, Zhang X. Recent advancements in liquid desiccant dehumidification technology. Renew Sust Energ Rev. 2014;31:38–52.

    CAS  Google Scholar 

  78. Cheng Q, Zhang X. Review of solar regeneration methods for liquid desiccant air-conditioning system. Energy Build. 2013;67:426–33.

    Google Scholar 

  79. Zhou J, Wang F, Noor N, Zhang X. An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation. Energy. 2020;194:116891.

    CAS  Google Scholar 

  80. Zhou J, Zhang X, Su W, Sun B. Performance analysis of vacuum membrane distillation regenerator in liquid desiccant air conditioning system. Int J Refrig. 2019;102:112–21.

    Google Scholar 

  81. Duong HC, Álvarez IRC, Nguyen TV, Nghiem LD. Membrane distillation to regenerate different liquid desiccant solutions for air conditioning. Desalination. 2018;443:137–42.

    CAS  Google Scholar 

  82. Chen Q, Kum JM, Li Y, Chua KJ. Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration. Appl Energy. 2018;230:960–73.

    CAS  Google Scholar 

  83. Duong HC, Hai FI, Al-Jubainawi A, Ma Z, He T, Nghiem LD. Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning. Sep Purif Technol. 2017;177:121–8.

    CAS  Google Scholar 

  84. Choo FH, KumJa M, Zhao K, Chakraborty A, Dass ETM, Prabu M, et al. Experimental study on the performance of membrane based multi- effect dehumidifier regenerator powered by solar energy. Energy Procedia. 2014;48:535–42.

    Google Scholar 

  85. Lefers R, Bettahalli NMS, Fedoroff N, Nunes SP, Leiknes T. Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes. Sep Purif Technol. 2018;199:57–63.

    CAS  Google Scholar 

  86. Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int J Therm Sci. 2004;43:367–82.

    CAS  Google Scholar 

  87. Duong HC, Xia L, Ma Z, Cooper P, Ela W, Nghiem LD. Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. J Membr Sci. 2017;542:133–42.

    CAS  Google Scholar 

  88. Khayet M. Solar desalination by membrane distillation: dispersion in energy consumption analysis and water production costs (a review). Desalination. 2013;308:89–101.

    CAS  Google Scholar 

  89. Kefeni KK, Msagati TM, Mamba BB. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage. Chem Eng J. 2015;276:222–31.

    CAS  Google Scholar 

  90. Seo EY, Cheong YW, Yim GJ, Min KW, Geroni JN. Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH. CATENA. 2017;148:11–6.

    CAS  Google Scholar 

  91. Tolonen E-T, Sarpola A, Hu T, Rämö J, Lassi U. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere. 2014;117:419–24.

    CAS  Google Scholar 

  92. Amaral MCS, Grossi LB, Ramos RL, Ricci BC, Andrade LH. Integrated UF–NF–RO route for gold mining effluent treatment: from bench-scale to pilot-scale. Desalination. 2018;440:111–21.

    CAS  Google Scholar 

  93. Fernando WAM, Ilankoon IMSK, Syed TH, Yellishetty M. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: a review. Miner Eng. 2018;117:74–90.

    CAS  Google Scholar 

  94. Simate GS, Ndlovu S. Acid mine drainage: challenges and opportunities. J Environ Chem Eng. 2014;2:1785–803.

    CAS  Google Scholar 

  95. Amaya-Vías D, Tataru L, Herce-Sesa B, López-López JA, López-Ramírez JA. Metals removal from acid mine drainage (Tinto River, SW Spain) by water gap and air gap membrane distillation. J Membr Sci. 2019;582:20–9.

    Google Scholar 

  96. Reis BG, Araújo ALB, Amaral MCS, Ferraz HC. Comparison of nanofiltration and direct contact membrane distillation as an alternative for gold mining effluent reclamation. Chem Eng Process Process Intensif. 2018;133:24–33.

    CAS  Google Scholar 

  97. Lopez J, Reig M, Gibert O, Valderrama C, Cortina JL. Evaluation of NF membranes as treatment technology of acid mine drainage: metals and sulfate removal. Desalination. 2018;440:122–34.

    CAS  Google Scholar 

  98. You S, Lu J, Tang CY, Wang X. Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chem Eng J. 2017;320:532–8.

    CAS  Google Scholar 

  99. Ryu S, Naidu G, Hasan Johir MA, Choi Y, Jeong S, Vigneswaran S. Acid mine drainage treatment by integrated submerged membrane distillation–sorption system. Chemosphere. 2019;218:955–65.

    CAS  Google Scholar 

  100. Hull EJ, Zodrow KR. Acid rock drainage treatment using membrane distillation: impacts of chemical-free pretreatment on scale formation, pore wetting, and product water quality. Environ Sci Technol. 2017;51:11928–34.

    CAS  Google Scholar 

  101. Kesieme UK, Aral H. Application of membrane distillation and solvent extraction for water and acid recovery from acidic mining waste and process solutions. J Environ Chem Eng. 2015;3:2050–6.

    CAS  Google Scholar 

  102. Duong HC, Pham TM, Luong ST, Nguyen KV, Nguyen DT, Ansari AJ, et al. A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater. Environ Sci Pollut Res. 2019;26:23407–15.

    CAS  Google Scholar 

  103. Zoungrana A, Çakmakci M, Zengin İH, İnoğlu Ö, Elcik H. Treatment of metal-plating waste water by modified direct contact membrane distillation. Chem Pap. 2016;70:1185–95.

    CAS  Google Scholar 

  104. Tomaszewska M, Gryta M, Morawski AW. Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Sep Purif Technol. 2001;22-23:591–600.

    Google Scholar 

  105. Kesieme UK, Milne N, Cheng CY, Aral H, Duke M. Recovery of water and acid from leach solutions using direct contact membrane distillation. Water Sci Technol. 2013;69:868–75.

    Google Scholar 

  106. Choi Y, Naidu G, Nghiem LD, Lee S, Vigneswaran S. Membrane distillation crystallization for brine mining and zero liquid discharge: opportunities, challenges, and recent progress. Environ Sci Water Res Technol. 2019;5:1202–21.

    CAS  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 105.08-2019.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Cong Duong.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, H.C., Ansari, A.J., Hailemariam, R.H. et al. Membrane Distillation for Strategic Water Treatment Applications: Opportunities, Challenges, and Current Status. Curr Pollution Rep 6, 173–187 (2020). https://doi.org/10.1007/s40726-020-00150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00150-8

Keywords

Navigation