Skip to main content
Log in

Group Decision Making Based on Power Heronian Aggregation Operators Under Linguistic Neutrosophic Environment

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The power average (PA) operator can overcome some effects of awkward data given by predispose decision makers, and Heronian mean (HM) operator can consider the interrelationship of the aggregated arguments. In order to take the full use of these two kinds of operators, in this article, we combined the PA operator with HM operator and extended them to process linguistic neutrosophic information, and presented the linguistic neutrosophic power Heronian aggregation operator, linguistic neutrosophic power weight Heronian aggregation operator. Further, some properties of these new aggregation operators are investigated and some special cases are discussed. Furthermore, we propose new technique based on these operators for multiple attribute group decision making. Finally, an illustrative example was given to illustrate the effectiveness and advantages of the developed method by comparing with the existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  4. Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, P.: Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2014)

    Article  Google Scholar 

  6. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  7. Smarandache, F.: Neutrosophy, Neutrosophic Probability, Set, and Logic. ProQuest Information & Learning, Ann Arbor (1998)

    MATH  Google Scholar 

  8. Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Ye, J.: Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 63(3), 171–179 (2015)

    Article  Google Scholar 

  10. Zhang, H.Y., Ji, P., Wang, J.Q., Chen, X.H.: An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 8(6), 1027–1043 (2015)

    Article  Google Scholar 

  11. Wu, X.H., Wang, J.Q., Peng, J.J., Chen, X.H.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 18(6), 1104–1116 (2016)

    Article  Google Scholar 

  12. Ye, J.: Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Syst. 24(1), 23–36 (2015)

    Google Scholar 

  13. Liu, P., Shi, L.: The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput. Appl. 26, 457–471 (2015)

    Article  Google Scholar 

  14. Liu, P., Teng, F.: An extended TODIM method for multiple attribute group decision making based on 2-dimension uncertain linguistic variable. Complexity 21(5), 20–30 (2016)

    Article  MathSciNet  Google Scholar 

  15. Liu, P., Chen, S.M.: Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inf. Sci. 430–431, 599–619 (2018)

    Article  MathSciNet  Google Scholar 

  16. Liu, P., Wang, Y.: Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators. Appl. Soft Comput. 17, 90–104 (2014)

    Article  Google Scholar 

  17. Chen, Z., Liu, P., Pei, Z.: An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8(4), 747–760 (2015)

    Article  Google Scholar 

  18. Liu, P., Qin, X.: Power average operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision making. J. Intell. Fuzzy Syst. 32(1), 1029–1043 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, P., Liu, X.: Multiattribute group decision making methods based on linguistic intuitionistic fuzzy power Bonferroni mean operators. Complexity 2017, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Liu, P., Wang, P.: Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Inf. Technol. Decis. Mak. 16(03), 817–850 (2017)

    Article  Google Scholar 

  21. Li, Y.Y., Zhang, H.Y., Wang, J.Q.: Linguistic neutrosophic sets and its application to multi-criteria decision-making problems. Int. J. Uncertain. Quantif. 7(2), 135–154 (2017)

    Article  Google Scholar 

  22. Fang, Z., Ye, J.: Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry 9(7), 111 (2017). https://doi.org/10.3390/sym9070111

    Article  MathSciNet  Google Scholar 

  23. Fan, C., Ye, J., Hu, K., Fan, E.: Bonferroni mean operators of linguistic neutrosophic numbers and their multiple attribute group decision-making methods. Information 8(3), 107 (2017). https://doi.org/10.3390/info8030107

    Article  Google Scholar 

  24. Liu, P., Liu, J., Merigó, J.M.: Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for dealing with multi-attribute group decision making. Appl. Soft Comput. 62, 395–422 (2018)

    Article  Google Scholar 

  25. Liu, P., Liu, J., Chen, S.M.: Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 69(1), 1–24 (2018)

    Article  Google Scholar 

  26. Zhao, H., Xu, Z., Cui, F.: Generalized hesitant fuzzy harmonic mean operators and their applications in group decision making. Int. J. Fuzzy Syst. 18(4), 685–696 (2016)

    Article  MathSciNet  Google Scholar 

  27. Ye, J.: Interval neutrosophic multiple attribute decision-making method with credibility information. Int. J. Fuzzy Syst. 18(5), 914–923 (2016)

    Article  Google Scholar 

  28. Liu, X., Tao, Z., Chen, H., Zhou, L.: A new interval-valued 2-tuple linguistic bonferroni mean operator and its application to multiattribute group decision making. Int. J. Fuzzy Syst. 19(1), 86–108 (2017)

    Article  MathSciNet  Google Scholar 

  29. Liu, P., Chen, S.M.: Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans. Cybern. 47(9), 2514–2530 (2017)

    Article  Google Scholar 

  30. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2008)

    Google Scholar 

  31. Yu, D.: Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 13(2), 1235–1246 (2013)

    Article  Google Scholar 

  32. Liu, H.Z., Pei, D.W.: HOWA operator and its application to multi-attribute decision making. J. Zhejiang Sci-Tech Univ. 25, 138–142 (2012)

    Google Scholar 

  33. Li, Y., Liu, P., Chen, Y.: Some single valued neutrosophic number Heronian mean operators and their application in multiple attribute group decision making. Informatica 27(1), 85–110 (2016)

    Article  Google Scholar 

  34. Liu, P., Teng, F.: Multiple attribute group decision making methods based on some normal neutrosophic number Heronian Mean operators. J. Intell. Fuzzy Syst. 32(3), 2375–2391 (2017)

    Article  MATH  Google Scholar 

  35. Wang, J., Wang, J.Q., Tian, Z., Zhao, D.: A multi-hesitant fuzzy linguistic multi-criteria decision-making approach for logistics outsourcing with incomplete information. Int. Trans. Oper. Res. (2017). https://doi.org/10.1111/itor.12448

    Google Scholar 

  36. Peng, H.G., Wang, J.Q., Cheng, P.F.: A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int. J. Mach. Learn. Cybern. (2017). https://doi.org/10.1007/s13042-016-0630-z

    Google Scholar 

  37. Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)

    Article  Google Scholar 

  38. Song, M., Jiang, W., Xie, C., Zhou, D.: A new interval numbers power average operator in multiple attribute decision making. Int. J. Intell. Syst. 32(6), 631–644 (2017)

    Article  Google Scholar 

  39. Peng, J.J., Wang, J.Q., Wu, X.H., Wang, J., Chen, X.H.: Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 8(2), 345–363 (2015)

    Article  Google Scholar 

  40. He, Y., He, Z., Huang, H.: Decision making with the generalized intuitionistic fuzzy power interaction averaging operators. Soft. Comput. 21(5), 1129–1144 (2017)

    Article  MATH  Google Scholar 

  41. Xu, Z., Yager, R.R.: Power-geometric operators and their use in group decision making. IEEE Trans. Fuzzy Syst. 18(1), 94–105 (2010)

    Article  Google Scholar 

  42. He, Y., He, Z., Wang, G., Chen, H.: Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 23(5), 1655–1668 (2015)

    Article  Google Scholar 

  43. Liu, P.: Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators. Comput. Ind. Eng. 108, 199–212 (2017)

    Article  Google Scholar 

  44. Xu, Z.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1), 19–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Merigó, J.M., Gil-Lafuente, A.M.: Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inf. Sci. 236, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 71771140, 71471172), the Special Funds of Taishan Scholars Project of Shandong Province (No. ts201511045), Shandong Provincial Social Science Planning Project (Nos. 17BGLJ04, 16CGLJ31 and 16CKJJ27), the Teaching Reform Research Project of Undergraduate Colleges and Universities in Shandong Province (No. 2015Z057), and Key research and development program of Shandong Province (No. 2016GNC110016). The authors also would like to express appreciation to the anonymous reviewers and Editors for their very helpful comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide Liu.

Ethics declarations

Conflict of interest

We declare that we have no commercial or associative interest that represents a conflict of interest I connection with work submitted.

Appendix 1: Proof of the Theorem 2

Appendix 1: Proof of the Theorem 2

Proof

Firstly, we need to prove the following equation.

$$ \begin{aligned} \sum\limits_{i = 1}^{m} {\sum\limits_{j = i}^{m} {\left( {m\omega_{i} n_{i} } \right)^{P} \otimes \left( {m\omega_{j} n_{j} } \right)^{q} } } \hfill \\ = \left( {f^{* - 1} \left( {1 - \left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - (1 - (1 - f^{*} (s_{{\eta_{i} }} ))^{{m\omega_{i} }} )^{p} (1 - (1 - f^{*} (s_{{\eta_{j} }} ))^{{m\omega_{j} }} )^{q} } \right)} } } \right)} \right),} \right. \hfill \\ \quad f^{* - 1} \left( {\left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)} \right), \hfill \\ \quad \left. {f^{* - 1} \left( {\left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)} \right)} \right). \hfill \\ \end{aligned} $$
(21)

By the operational rules of LNNs defined in (6)–(9), we have

$$ \left( {m\omega_{i} n_{i} } \right)^{p} = \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} } \right),f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} } \right),f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} } \right)} \right)} \right\rangle , $$
$$ \left( {m\omega_{j} n_{j} } \right)^{q} = \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right),f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{m\omega j} } \right)^{q} } \right),f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} \right)} \right\rangle . $$
$$ \left( {m\omega _{i} n_{i} } \right)^{p} \otimes \left( {m\omega _{j} n_{j} } \right)^{q} = \left\langle {\left( {f^{{* - 1}} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta _{i} }} )} \right)^{{m\omega _{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta _{j} }} )} \right)^{{m\omega _{j} }} } \right)^{q} } \right),} \right.} \right.f^{{* - 1}} \left( {\left( {1 - \left( {\left( {1 - \left( {f^{*} (s_{{\mu _{i} }} )} \right)^{{m\omega _{i} }} } \right)^{p} } \right)\left( {1 - \left( {f^{*} (s_{{\mu _{j} }} )} \right)^{{m\omega _{j} }} } \right)^{q} } \right)} \right),\left. {\left. {f^{{* - 1}} \left( {\left( {1 - \left( {\left( {1 - \left( {f^{*} (s_{{\nu _{i} }} )} \right)^{{m\omega _{i} }} } \right)^{p} } \right)\left( {1 - \left( {f^{*} (s_{{\nu _{j} }} )} \right)^{{m\omega _{j} }} } \right)^{q} } \right)} \right)} \right)} \right\rangle $$
(22)

(1) When \( m = 2, \) by Eqs. (6) and (22), we have

$$ \begin{aligned} \sum\limits_{i = 1}^{2} {\sum\limits_{j = i}^{2} {\left( {m\omega_{i} n_{i} } \right)^{P} \otimes \left( {m\omega_{j} n_{j} } \right)^{q} } } & = \left( {\left( {2\omega_{1} n_{1} } \right)^{P} \otimes \left( {2\omega_{1} n_{1} } \right)^{q} } \right) \oplus \left( {\left( {2\omega_{1} n_{1} } \right)^{P} \otimes \left( {2\omega_{2} n_{2} } \right)^{q} } \right) \oplus \left( {\left( {2\omega_{2} n_{2} } \right)^{P} \otimes \left( {2\omega_{2} n_{2} } \right)^{q} } \right) \\ & = \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{q} } \right),} \right.} \right.f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{q} } \right), \\ & \;\left. {\left. {f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{q} } \right)} \right)} \right\rangle \oplus \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right),} \right.} \right. \\ & \;f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right),\text{ }\left. {\left. {f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{1} }} )} \right)^{{2\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right)} \right)} \right\rangle \\ & \; \oplus \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right),} \right.} \right.f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right), \\ & \text{ }\left. {\left. {\;f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{2} }} )} \right)^{{2\omega_{2} }} } \right)^{q} } \right)} \right)} \right\rangle . \\ \end{aligned} $$

By using Eq. (6), we get

$$ \begin{aligned} = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{2} {\prod\limits_{j = 1}^{2} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{2\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right),} \right.} \right. \hfill \\ \text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{2} {\prod\limits_{j = 1}^{2} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{2\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{{2\omega_{j} }} } \right)^{q} } \right)} } } \right), \hfill \\ \left. {\left. {\text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{2} {\prod\limits_{j = 1}^{2} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{2\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{2\omega_{j} }} } \right)^{q} } \right)} } } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$
(23)

That is, Eq. (21) holds for \( m = 2. \)

(2) Let us assume that Eq. (21) holds for \( m = z. \)

$$ \begin{aligned} = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{z} {\prod\limits_{j = 1}^{z} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{z\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{j} }} )} \right)^{{z\omega_{j} }} } \right)^{q} } \right)} } } \right),} \right.} \right. \hfill \\ \text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{z} {\prod\limits_{j = 1}^{z} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{z\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{{z\omega_{j} }} } \right)^{q} } \right)} } } \right), \hfill \\ \left. {\left. {\text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{z} {\prod\limits_{j = 1}^{z} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{z\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{z\omega_{j} }} } \right)^{q} } \right)} } } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$
(24)

Furthermore, when \( m = z + 1 \), we have

$$ \begin{aligned} \sum\limits_{i = 1}^{z + 1} {\sum\limits_{j = i}^{z + 1} {\left( {(z + 1)\omega_{i} n_{i} } \right)^{P} \otimes \left( {(z + 1)\omega_{j} n_{j} } \right)^{q} } } & = \sum\limits_{i = 1}^{z} {\sum\limits_{j = i}^{z} {\left( {\left( {z + 1} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {z + 1} \right)\omega_{j} n_{j} } \right)^{q} \oplus \sum\limits_{i = 1}^{z} {\left( {\left( {z + 1} \right)\omega_{i} n_{i} } \right)^{p} } } } \\ & \quad \otimes \left( {\left( {z + 1} \right)\omega_{z + 1} n_{z + 1} } \right)^{q} \oplus \left( {\left( {z + 1} \right)\omega_{z + 1} n_{z + 1} } \right)^{p} \otimes \left( {\left( {z + 1} \right)\omega_{z + 1} n_{z + 1} } \right)^{q} \\ \end{aligned} $$
(25)

Firstly, we prove that

$$ \begin{aligned} \sum\limits_{i = 1}^{z} {\left( {\left( {z + 1} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {z + 1} \right)\omega_{z + 1} n_{z + 1} } \right)^{q} } = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{z} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{z + 1} }} )} \right)^{{(z + 1)\omega_{z + 1} }} } \right)^{q} } \right)} } \right),} \right.} \right. \hfill \\ \quad \text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{z} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{z + 1} }} )} \right)^{{(z + 1)\omega_{z + 1} }} } \right)^{q} } \right)} } \right),\left. {\left. {f^{* - 1} \left( {\prod\limits_{i = 1}^{z} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{z + 1} }} )} \right)^{{(z + 1)\omega_{z + 1} }} } \right)^{q} } \right)} } \right)} \right)} \right\rangle \hfill \\ \end{aligned} $$
(26)

We shall prove Eq. (26) on mathematical induction on \( z. \)

(a) For \( z = 2, \) we have

$$ \begin{aligned} \sum\limits_{i = 1}^{2} {\left( {\left( {z + 1} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {z + 1} \right)\omega_{z + 1} n_{z + 1} } \right)^{q} } = \left( {\left( {3\omega_{1} n_{1} } \right)^{p} \otimes \left( {3\omega_{3} n_{3} } \right)^{q} } \right) \oplus \left( {\left( {3\omega_{2} n_{2} } \right)^{p} \otimes \left( {3\omega_{3} n_{3} } \right)^{q} } \right) \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{1} }} )} \right)^{{3\omega_{1} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right),} \right.} \right.f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{1} }} )} \right)^{{3\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right), \hfill \\ \text{ }\left. {\left. {f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{1} }} )} \right)^{{3\omega_{1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right)} \right)} \right\rangle \oplus \left\langle {\left( {f^{* - 1} \left( {\left( {1 - \left( {1 - f^{*} (s_{{\eta_{2} }} )} \right)^{{3\omega_{2} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right),} \right.} \right. \hfill \\ f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{2} }} )} \right)^{{3\omega_{2} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right),\text{ }\left. {\left. {f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{2} }} )} \right)^{{3\omega_{2} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$
$$ \begin{aligned} = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{2} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{3\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right)} } \right),} \right.} \right.f^{* - 1} \left( {\prod\limits_{i = 1}^{2} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{3\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right)} } \right), \hfill \\ \left. {\left. {\text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{2} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{3\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{3} }} )} \right)^{{3\omega_{3} }} } \right)^{q} } \right)} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$
(27)

(b) Let us assume that Eq. (26) holds for \( z = b \), that is;

$$ \begin{aligned} \sum\limits_{i = 1}^{z} {\left( {\left( {\left( {z + 1} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {z + 1} \right)\omega_{b + 1} n_{b + 1} } \right)^{q} } \right)} \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{\left( {b + 1} \right)\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{b + 1} }} )} \right)^{{(b + 1)\omega_{b + 1} }} } \right)^{q} } \right)} } \right),} \right.} \right.f^{* - 1} \left( {\prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{(b + 1)\omega_{i} }} } \right)^{p} } \right.} } \right. \hfill \\ \text{ }\left. {\left( {1 - \left( {f^{*} (s_{{\mu_{b + 1} }} )} \right)^{{(b + 1)\omega_{b + 1} }} } \right)^{q} } \right),\left. {\left. {f^{* - 1} \left( {\prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{(b + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{b + 1} }} )} \right)^{{(b + 1)\omega_{b + 1} }} } \right)^{q} } \right)} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$
(28)

Then, when \( z = b + 1 \), we have

$$ \begin{aligned} \sum\limits_{i = 1}^{b + 1} {\left( {\left( {\left( {b + 2} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {b + 2} \right)\omega_{b + 2} n_{b + 2} } \right)^{q} } \right)} = \sum\limits_{i = 1}^{b} {\left( {\left( {\left( {b + 2} \right)\omega_{i} n_{i} } \right)^{p} \otimes \left( {\left( {b + 2} \right)\omega_{b + 2} n_{b + 2} } \right)^{q} } \right)} \oplus \left( {\left( {\left( {b + 2} \right)\omega_{b + 1} n_{b + 1} } \right)^{p} \otimes \left( {\left( {b + 2} \right)\omega_{b + 2} n_{b + 2} } \right)^{q} } \right) \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{\left( {b + 2} \right)\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} } \right),f^{* - 1} \left( {\prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{(b + 2)\omega_{i} }} } \right)^{p} } \right.} } \right.} \right.} \right. \hfill \\ \quad \text{ }\left. {\left( {1 - \left( {f^{*} (s_{{\mu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right),\left. {\text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{b} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{(b + 2)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} } \right)} \right) \hfill \\ \quad \oplus \left( {f^{* - 1} \left( {1 - \left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{b + 1} }} )} \right)^{{\left( {b + 2} \right)\omega_{b + 1} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} \right),} \right.f^{* - 1} \left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{b + 1} }} )} \right)^{{(b + 2)\omega_{b + 1} }} } \right)^{p} } \right. \hfill \\ \quad \text{ }\left. {\left( {1 - \left( {f^{*} (s_{{\mu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)\left. {f^{* - 1} \left( {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{b + 1} }} )} \right)^{{(b + 2)\omega_{b + 1} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} \right)} \right\rangle \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{b + 1} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{\left( {b + 2} \right)\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} } \right),} \right.} \right.f^{* - 1} \left( {\prod\limits_{i = 1}^{b + 1} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{(b + 2)\omega_{i} }} } \right)^{p} } \right.} } \right. \hfill \\ \quad \text{ }\left. {\left( {1 - \left( {f^{*} (s_{{\mu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right),\left. {\left. {f^{* - 1} \left( {\prod\limits_{i = 1}^{b + 1} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{(b + 2)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{b + 2} }} )} \right)^{{(b + 2)\omega_{b + 2} }} } \right)^{q} } \right)} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$

Therefore, Eq. (26) is true for \( z = b + 1. \) Hence, Eq. (26) is also true for all \( z. \)

Similarly, we can prove the other parts of Eq. (25).

So Eq. (25) becomes

$$ \begin{aligned} \sum\limits_{i = 1}^{z + 1} {\sum\limits_{j = i}^{z + 1} {\left( {(z + 1)\omega_{i} n_{i} } \right)^{P} \otimes \left( {(z + 1)\omega_{j} n_{j} } \right)^{q} } } = \left\langle {\left( {f^{* - 1} \left( {1 - \prod\limits_{i = 1}^{z + 1} {\prod\limits_{j = 1}^{z + 1} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{j} }} )} \right)^{{(z + 1)\omega_{j} }} } \right)^{q} } \right)} } } \right),} \right.} \right. \hfill \\ \text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{z + 1} {\prod\limits_{j = 1}^{z + 1} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{{(z + 1)\omega_{j} }} } \right)^{q} } \right)} } } \right),\left. {\left. {\text{ }f^{* - 1} \left( {\prod\limits_{i = 1}^{z + 1} {\prod\limits_{j = 1}^{z + 1} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{(z + 1)\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{(z + 1)\omega_{j} }} } \right)^{q} } \right)} } } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$

Therefore, Eq. (21) is true for \( m = z + 1 \). Hence, Eq. (21) is true for all \( m. \)

By Eq. (21), we can prove that Eq. (20) is right. From Eq. (21) and the operational laws defined for LNNs, we have

$$ \begin{aligned} \frac{2}{m(m + 1)}\sum\limits_{i = 1}^{m} {\sum\limits_{j = i}^{m} {\left( {m\omega_{i} n_{i} } \right)^{p} \otimes \left( {m\omega_{j} n_{j} } \right)^{q} } } \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {1 - \left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = 1}^{m} {\left( {1 - \left( {1 - \left( {1 - f^{*} (s_{{\eta_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {1 - f^{*} (s_{{\eta_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right),} \right.} \right. \hfill \\ \quad f^{* - 1} \left( {\left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = 1}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\eta_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\eta_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right), \hfill \\ \left. {\left. {\quad f^{* - 1} \left( {\left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = 1}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\eta_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\eta_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$

so,

$$ \begin{aligned} \left( {\frac{2}{m(m + 1)}\sum\limits_{i = 1}^{m} {\sum\limits_{j = i}^{m} {\left( {m\omega_{i} n_{i} } \right)^{p} \otimes \left( {m\omega_{j} n_{j} } \right)^{q} } } } \right)^{{\frac{1}{p + q}}} \hfill \\ = \left\langle {\left( {f^{* - 1} \left( {1 - \left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - (1 - (1 - f^{*} (s_{{\eta_{i} }} ))^{{m\omega_{i} }} )^{p} (1 - (1 - f^{*} (s_{{\eta_{j} }} ))^{{m\omega_{j} }} )^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right)^{{\frac{1}{p + q}}} ,} \right.} \right. \hfill \\ \quad f^{* - 1} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\mu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\mu_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right)^{{\frac{1}{p + q}}} } \right), \hfill \\ \left. {\left. {\quad f^{* - 1} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{m} {\prod\limits_{j = i}^{m} {\left( {1 - \left( {1 - \left( {f^{*} (s_{{\nu_{i} }} )} \right)^{{m\omega_{i} }} } \right)^{p} \left( {1 - \left( {f^{*} (s_{{\nu_{j} }} )} \right)^{{m\omega_{j} }} } \right)^{q} } \right)} } } \right)^{{\frac{2}{m(m + 1)}}} } \right)^{{\frac{1}{p + q}}} } \right)} \right)} \right\rangle . \hfill \\ \end{aligned} $$

This completes the proof of Theorem 2.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Mahmood, T. & Khan, Q. Group Decision Making Based on Power Heronian Aggregation Operators Under Linguistic Neutrosophic Environment. Int. J. Fuzzy Syst. 20, 970–985 (2018). https://doi.org/10.1007/s40815-018-0450-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0450-2

Keywords

Navigation