Skip to main content
Log in

Global Well-Posedness for the Massive Maxwell–Klein–Gordon Equation with Small Critical Sobolev Data

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

In this paper we prove global well-posedness and modified scattering for the massive Maxwell–Klein–Gordon equation in the Coulomb gauge on \(\mathbb {R}^{1+d}\) \((d \ge 4)\) for data with small critical Sobolev norm. This extends to the general case \( m^2 > 0 \) the results of Krieger–Sterbenz–Tataru (\(d=4,5 \)) and Rodnianski–Tao (\( d \ge 6 \)), who considered the case \( m=0\). We proceed by generalizing the global parametrix construction for the covariant wave operator and the functional framework from the massless case to the Klein–Gordon setting. The equation exhibits a trilinear cancelation structure identified by Machedon–Sterbenz. To treat it one needs sharp \(L^{2}\) null form bounds, which we prove by estimating renormalized solutions in null frames spaces similar to the ones considered by Bejenaru–Herr. To overcome logarithmic divergences we rely on an embedding property of \( \Box ^{-1} \) in conjunction with endpoint Strichartz estimates in Lorentz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Here, \( A^{free} \) is the free solution \( \Box A^{free}=0 \) with \(A^{free}_{x}[0] = A_{x}[0]\) and \( A^{free}_{0} = 0\).

  2. \(\delta _{1} \) is the admissible frequency envelope constant.

  3. \( \mathcal {L}\) denotes any translation invariant bilinear form with bounded mass kernel.

  4. Notice that this case does not occur when \( k_{\min }=0 \).

References

  1. Bejenaru, I., Herr, S.: On global well-posedness and scattering for the massive Dirac–Klein–Gordon system. arXiv preprint arXiv:1409.1778 (2014)

  2. Bejenaru, I., Herr, S.: The cubic Dirac equation: small initial data in \(H^{1/2}(\mathbb{R}^{2})\). Commun. Math. Phys. 335, 1–48 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bejenaru, I., Herr, S.: The cubic Dirac equation: small initial data in \(H^1(\mathbb{R}^3)\). Commun. Math. Phys. 335(1), 43–82 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Cuccagna, S.: On the local existence for the Maxwell–Klein–Gordon system in \(\mathbb{R}^{3+1}\). Commun. Partial Differ. Equ. 24(5–6), 851–867 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eardley, D.M., Moncrief, V.: The global existence of Yang–Mills–Higgs fields in \(4\)-dimensional Minkowski space. Commun. Math. Phys. 83(2), 171–191 (1982)

    Article  ADS  MATH  Google Scholar 

  6. Foschi, D., Klainerman, S.: Bilinear space-time estimates for homogeneous wave equations. Annales Scientifiques de l’Ecole Normale Superieure 33(2), 211–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gavrus, C., Oh, S.-J.: Global well-posedness of high dimensional Maxwell–Dirac for small critical data. arXiv preprint arXiv:1604.07900 (2016)

  8. Grafakos, L.: Classical Fourier Analysis. Springer, New York (2008)

    MATH  Google Scholar 

  9. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, New York (2003)

    Book  MATH  Google Scholar 

  10. Keel, M., Roy, T., Tao, T.: Global well-posedness of the Maxwell–Klein–Gordon equation below the energy norm. Discrete Contin. Dyn. Syst 30(3), 573–621 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keel, M., Tao, T.: Endpoint strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klainerman, S., Machedon, M.: On the Maxwell–Klein–Gordon equation with finite energy. Duke Math. J. 74(1), 19–44 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klainerman, S., Machedon, M.: On the optimal local regularity for gauge field theories. Differ. Integral Equ. 10(6), 1019–1030 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Klainerman, S., Tataru, D.: On the optimal local regularity for the Yang–Mills equations in \( \mathbb{R}^{4+1} \). J. Am. Math. Soc. 12(1), 93–116 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krieger, J., Lührmann, J.: Concentration compactness for the critical Maxwell–Klein–Gordon equation. Ann. PDE 1(1), 1–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krieger, J., Sterbenz, J.: Global regularity for the Yang–Mills equations on high dimensional Minkowski space. Mem. Am. Math. Soc. 223(1047), vi+99 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Krieger, J., Sterbenz, J., Tataru, D.: Global well-posedness for the Maxwell–Klein–Gordon equation in \(4+1\) dimensions: small energy. Duke Math. J. 164(6), 973–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krieger, J., Tataru, D.: Global well-posedness for the Yang–Mills equation in \(4+1\) dimensions. Small Energy. arXiv:1509.00751 (2015)

  20. Machedon, M., Sterbenz, J.: Almost optimal local well-posedness for the \((3+1)\)-dimensional Maxwell–Klein–Gordon equations. J. Am. Math. Soc. 17(2), 297–359 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. European Mathematical Society (EMS), Zürich (2011)

    Book  MATH  Google Scholar 

  22. O-Neil, R.: Convolution operators and \({L}(p,q)\) spaces. Duke Math. J. 30(1), 129–142, 03 (1963)

  23. Oh, S.-J.: Gauge choice for the Yang Mills equations using the Yang Mills heat flow and local well-posedness in \( {H}^1\). J. Hyperb. Differ. Equ. 11(01), 1–108 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oh, S.-J.: Finite energy global well-posedness of the Yang Mills equations on \(\mathbb{R}^{1+3}\): an approach using the Yang Mills heat flow. Duke Math. J. 164(9), 1669–1732, 06 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oh, S.-J., Tataru, D.: Energy dispersed solutions for the (\(4+1\))-dimensional Maxwell–Klein–Gordon equation. Am. J. Math. 140, 1–82 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oh, S.-J., Tataru, D.: Global well-posedness and scattering of the (\(4+1\))-dimensional Maxwell–Klein–Gordon equation. Invent. Math. 205, 781–877 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Oh, S.-J., Tataru, D.: Local well-posedness of the (\(4+1\))-dimensional Maxwell–Klein–Gordon equation at energy regularity. Ann. PDE. 2(2), (2016)

  28. Pecher, H.: Low regularity local well-posedness for the Maxwell–Klein–Gordon equations in Lorenz gauge. Adv. Differ. Equ. 19(3/4), 359–386 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Rodnianski, I., Tao, T.: Global regularity for the Maxwell–Klein–Gordon equation with small critical Sobolev Norm in high dimensions. Commun. Math. Phys. 251(2), 377–426 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Selberg, S.: Almost optimal local well-posedness of the Maxwell–Klein–Gordon equations in \(1 + 4\) dimensions. Commun. Partial Differ. Equ. 27(5–6), 1183–1227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Selberg, S., Tesfahun, A.: Finite-energy global well-posedness of the Maxwell–Klein–Gordon system in Lorenz gauge. Commun. Partial Differ. Equ. 35(6), 1029–1057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 11, 555–571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sterbenz, J.: Global regularity and scattering for general non-linear wave equations ii. (\(4+1\)) dimensional Yang–Mills equations in the Lorentz gauge. Am. J. Math. 129(3), 611–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Tao, T.: Multilinear weighted convolution of \( {L}^{2}\) functions, and applications to nonlinear dispersive equations. Am. J. Math. 123(5), 839–908 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tataru, D.: Rough solutions for the wave maps equation. Am. J. Math. 127(2), 293–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Gavrus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author thanks Daniel Tataru for many fruitful conversations and thanks Sung-Jin Oh for suggesting this problem. The author was supported in part by the NSF Grant DMS-1266182 as a graduate student at UC Berkeley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrus, C. Global Well-Posedness for the Massive Maxwell–Klein–Gordon Equation with Small Critical Sobolev Data. Ann. PDE 5, 10 (2019). https://doi.org/10.1007/s40818-019-0065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-019-0065-4

Navigation