Skip to main content

Advertisement

Log in

Pseudoelastic NiTiNOL in Orthopaedic Applications

  • Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Pseudoelastic NiTiNOL presents an attractive material option for devices used in clinical orthopaedic applications. The capacity of the material to exert sustained compression during shape recovery aligns well with the mechanobiological factors associated with bone healing, particularly in applications such as fracture healing and joint fusion. Orthopaedic medical devices which have incorporated NiTiNOL are increasing in number, with two noted examples including staples and intramedullary nails. Early NiTiNOL devices utilized shape memory NiTiNOL, but the logistical difficulties with maintaining a cold state in the clinic or limited force-generation for materials warmed from room temperature to body temperature have led to pseudoelastic NiTiNOL devices dominating clinical usage. Both pre-clinical biomechanical and clinical studies have shown that these devices do exert sustained compression beyond the abilities of competing static devices, and largely have resulted in superior clinical outcomes, such as higher fusion rates and faster times to fusion. Given these results, continued adoption of existing NiTiNOL devices and future development of new orthopaedic devices utilizing the material should continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hughes JL (1976) Evaluation of nitinol for use as a material in the construction of orthopaedic implants. US Army Medical Research and Development, Fredrick

    Google Scholar 

  2. Simon M et al (1977) A vena cava filter using thermal shape memory alloy. Exp Aspects Radiol 125(1):87–94

    CAS  Google Scholar 

  3. Carter DR et al (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–55

    Article  Google Scholar 

  4. Allori AC et al (2008) Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B 14(3):285–293

    Article  CAS  Google Scholar 

  5. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  Google Scholar 

  6. Rosa N et al (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37(8):719–728

    Article  Google Scholar 

  7. Liu C et al (2018) Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 108:145–155

    Article  Google Scholar 

  8. Charnley J (1951) Compression arthrodesis of the ankle and shoulder. J Bone Joint Surg Br 33B(2):180–191

    Article  CAS  Google Scholar 

  9. Muckley T et al (2007) Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails. Foot Ankle Int 28(2):224–231

    Article  Google Scholar 

  10. Parker L, Singh D (2009) The principles of foot and ankle arthrodesis. Orthop Trauma 23(6):385–394

    Article  Google Scholar 

  11. Evers J et al (2017) 3D optical investigation of 2 nail systems used in tibiotalocalcaneal arthrodesis: a biomechanical study. Foot Ankle Int 38(5):571–579

    Article  Google Scholar 

  12. Claes L, Eckert-Hubner K, Augat P (2003) The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg 388(5):316–322

    Article  Google Scholar 

  13. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing–an update. Injury 38(Suppl 1):S3–10

    Article  Google Scholar 

  14. Yamaji T et al (2001) The effect of micromovement on callus formation. J Orthop Sci 6(6):571–575

    Article  CAS  Google Scholar 

  15. Wehner T et al (2011) Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech 26(2):147–151

    Article  Google Scholar 

  16. Knothe U, Tate ML, Perren SM (2000) 300 Years of Intramedullary Fixation – from Aztec Practice to Standard Treatment Modality. European Journal of Trauma 26:217–225

    Article  Google Scholar 

  17. Rosa N et al (2017) Recent developments on intramedullary nailing: a biomechanical perspective. Ann N Y Acad Sci 1408(1):20–31

    Article  Google Scholar 

  18. Yakacki CM et al (2010) Compression forces of internal and external ankle fixation devices with simulated bone resorption. Foot Ankle Int 31(1):76–85

    Article  Google Scholar 

  19. Yakacki CM et al (2011) Pseudoelastic intramedullary nailing for tibio-talo-calcaneal arthrodesis. Exp Rev Med Dev 8(2):159–166

    Article  CAS  Google Scholar 

  20. Taylor J et al (2016) Tibiotalocalcaneal arthrodesis nails: a comparison of nails with and without internal compression. Foot Ankle Int 37(3):294–299

    Article  Google Scholar 

  21. Griffin MJ, Coughlin MJ (2018) Evaluation of midterm results of the panta nail: an active compression tibiotalocalcaneal arthrodesis device. J Foot Ankle Surg 57(1):74–80

    Article  Google Scholar 

  22. Anderson R et al (2016) Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail. J Mech Behav Biomed Mater 62:83–92

    Article  Google Scholar 

  23. Karakasli A, Satoglu IS, Havitcioglu H (2015) A new intramedullary sustained dynamic compression nail for the treatment of long bone fractures: a biomechanical study. Eklem Hastalik Cerrahisi 26(2):64–71

    Article  Google Scholar 

  24. Mueckley TM et al (2006) Biomechanical evaluation of primary stiffness of tibiotalar arthrodesis with an intramedullary compression nail and four other fixation devices. Foot Ankle Int 27(10):814–820

    Article  Google Scholar 

  25. Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23

    Article  CAS  Google Scholar 

  26. Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691

    Article  CAS  Google Scholar 

  27. Gabarre S et al (2017) Influence of gap size, screw configuration, and nail materials in the stability of anterograde reamed intramedullary nail in femoral transverse fractures. Injury 48(Suppl 6):S40–S46

    Article  Google Scholar 

  28. Yakacki CM et al (2017) Patient-specific finite-element analysis of three intramedullary nails for tibiotalocalcaneal fusion. In: AOFAS annual meeting. 2017: Seattle, WA

  29. Kujala S et al (2002) Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials 23(12):2535–2543

    Article  CAS  Google Scholar 

  30. Firoozbakhsh K et al (2004) Smart intramedullary rod for correction of pediatric bone deformity: a preliminary study. Clin Orthop Relat Res 424:194–201

    Article  Google Scholar 

  31. Assad M et al (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res B 64(2):121–129

    Article  CAS  Google Scholar 

  32. Assad M et al (2003) (2003) Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res B 64(2):107–120

    Article  CAS  Google Scholar 

  33. Russell SM (2009) Design considerations for nitinol bone staples. J Mater Eng Perform 18(5–6):831–835

    Article  CAS  Google Scholar 

  34. Knight A et al (2013) Method and apparatus for an orthopedic fixation system. BioMedical Enterprises: USPTO 8584853B2.

  35. Cheney D (2018) Elastic orthopedic implant and method of manufacturing thereof. BioMedical Enterprises: USPTO 10117647B2

  36. Cheney D (2014) Bonestaples and methods of use therefor and manufacturing thereof. BioMedical Enterprises: USPTO US2014/0276830

  37. Mereau TM, Ford TC (2006) Nitinol compression staples for bone fixation in foot surgery. J Am Podiatr Med Assoc 96(2):102–106

    Article  Google Scholar 

  38. Neufeld SK, Parks BG, Naseef GS, Melamed EA, Schon LC (2002) Arthrodesis of the first metatarsophalangeal joint: a biomechanical study comparing memory compression staples, cannulated screws, and a dorsal plate. Foot Ankle Int 23(2):97–101

    Article  Google Scholar 

  39. Shibuya N et al (2007) A compression force comparison study among three staple fixation systems. J Foot Ankle Surg 46(1):7–15

    Article  Google Scholar 

  40. Farr D et al (2010) A biomechanical comparison of shape memory compression staples and mechanical compression staples: compression or distraction? Knee Surg Sports Traumatol Arthrosc 18(2):212–217

    Article  Google Scholar 

  41. Chang TJ, Overley BD, Pancratz D (2008) An in vitro comparative study of screw and nitinol staple compression: a model showing active dynamic compression. The Podiatry Institute Update Textbooks, Decatur

    Google Scholar 

  42. Russell NA et al (2015) Evaluation of nitinol staples for the lapidus arthrodesis in a reproducible biomechanical model. Front Surg 2:65

    Article  Google Scholar 

  43. Aiyer A et al (2016) The impact of nitinol staples on the compressive forces, contact area, and mechanical properties in comparison to a claw plate and crossed screws for the first tarsometatarsal arthrodesis. Foot Ankle Spec 9(3):232–240

    Article  Google Scholar 

  44. Hoon QJ et al (2016) Biomechanical evaluation of shape-memory alloy staples for internal fixation-an in vitro study. J Exp Orthop 3(1):19

    Article  Google Scholar 

  45. McKnight RR, Lee SK (2019) Biomechanical properties of nitinol staples: effects of troughing, effective leg length, and 2-staple constructs. J Hand Surg Am 44(6):520

    Article  Google Scholar 

  46. Zhou PY et al (2019) Nickel-titanium arched shape-memory alloy connector combined with bone grafting in the treatment of scaphoid nonunion. Eur J Med Res 24(1):27

    Article  CAS  Google Scholar 

  47. Malal JJ, Hegde G, Ferdinand RD (2006) Tarsal joint fusion using memory compression staples–a study of 10 cases. J Foot Ankle Surg 45(2):113–117

    Article  Google Scholar 

  48. Fernandez-de-Retana P, Poggio D, Ortega JP (2008) Technical tip: first metatarsophalangeal arthrodesis with 20-mm memory compression staples. Foot Ankle Int 29(6):613–615

    Article  Google Scholar 

  49. Choudhary RK, Theruvil B, Taylor GR (2004) First metatarsophalangeal joint arthrodesis: a new technique of internal fixation by using memory compression staples. J Foot Ankle Surg 43(5):312–317

    Article  Google Scholar 

  50. Mallette JP, Glenn CL, Glod DJ (2014) The incidence of nonunion after lapidus arthrodesis using staple fixation. J Foot Ankle Surg 53(3):303–306

    Article  Google Scholar 

  51. Schipper ON et al (2018) Radiographic results of nitinol compression staples for hindfoot and midfoot arthrodeses. Foot Ankle Int 39(2):172–179

    Article  Google Scholar 

  52. Schipper ON, Ellington JK (2019) Nitinol compression staples in foot and ankle surgery. Orthop Clin N Am 50(3):391–399

    Article  Google Scholar 

  53. Wu JC et al (2019) Fracture fixation using shape-memory (ninitol) staples. Orthop Clin N Am 50(3):367–374

    Article  CAS  Google Scholar 

  54. Bennett GL et al (2005) Tibiotalocalcaneal arthrodesis: a biomechanical assessment of stability. Foot Ankle Int 26(7):530–536

    Article  Google Scholar 

  55. Jehan S et al (2011) The success of tibiotalocalcaneal arthrodesis with intramedullary nailing–a systematic review of the literature. Acta Orthop Belg 77(5):644–651

    Google Scholar 

  56. Dupont KM, Shibuya N, Bariteau JT (2019) Tibiotalocalcaneal arthrodesis with intramedullary nails—mechanobiological background and evolution of compressive technology. Glob J Ortho Res 1(5):873–884

    Google Scholar 

  57. Jeng CL et al (2013) Tibiotalocalcaneal arthrodesis with bulk femoral head allograft for salvage of large defects in the ankle. Foot Ankle Int 34(9):1256–1266

    Article  Google Scholar 

  58. Bussewitz B et al (2014) Retrograde intramedullary nail with femoral head allograft for large deficit tibiotalocalcaneal arthrodesis. Foot Ankle Int 35(7):706–711

    Article  Google Scholar 

  59. Ford SE, Kwon JY, Ellington JK (2019) Tibiotalocalcaneal arthrodesis utilizing a titanium intramedullary nail with an internal pseudoelastic nitinol compression element: a retrospective case series of 33 patients. J Foot Ankle Surg 58(2):266–272

    Article  Google Scholar 

  60. Steele JR et al (2019) Comparison of tibiotalocalcaneal arthrodeses using a sustained dynamic compression nail versus nondynamized nails. Foot Ankle Spec 13:193–200

    Article  Google Scholar 

  61. Berson L, McGarvey WC, Clanton TO (2002) Evaluation of compression in intramedullary hindfoot arthrodesis. Foot Ankle Int 23(11):992–995

    Article  Google Scholar 

  62. Hsu AR, Ellington JK, Adams SB Jr (2015) Tibiotalocalcaneal arthrodesis using a nitinol intramedullary hindfoot nail. Foot Ankle Spec 8(5):389–396

    Article  Google Scholar 

  63. Kinmon K et al (2013) Benchtop comparison of a novel dynamic compression screw to a standard cortical screw: compression integrity and gap size over time during simulated resorption. Foot Ankle Spec 6(3):222–225

    Article  Google Scholar 

  64. Conklin MJ et al (2019) Total ankle replacement conversion to tibiotalocalcaneal arthrodesis with bulk femoral head allograft and pseudoelastic intramedullary nail providing sustained joint compression. Foot Ankle Orthopaedics 3(4):1–7

    Google Scholar 

  65. Dekker TJ et al (2018) Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 39(8):916–921

    Article  Google Scholar 

  66. Kildow BJ et al (2016) Measurement of nitinol recovery distance using pseudoelastic intramedullary nails for tibiotalocalcaneal arthrodesis. Foot Ankle Spec 9(6):494–499

    Article  Google Scholar 

  67. Kreulen C, Lian E, Giza E (2017) Technique for use of trabecular metal spacers in tibiotalocalcaneal arthrodesis with large bony defects. Foot Ankle Int 38(1):96–106

    Article  Google Scholar 

  68. Lachman JR, Adams SB (2019) Tibiotalocalcaneal arthrodesis for severe talar avascular necrosis. Foot Ankle Clin 24(1):143–161

    Article  Google Scholar 

  69. Latt LD, Smith KE, Dupont KM (2017) Revision tibiotalocalcaneal arthrodesis with a pseudoelastic intramedullary nail: a case study. Foot Ankle Spec 10(1):75–81

    Article  Google Scholar 

  70. Zhao X et al (2012) Nickel-titanium shape-memory sawtooth-arm embracing fixator for periprosthetic femoral fractures. Int Orthop 36(3):619–626

    Article  Google Scholar 

  71. Chen X et al (2013) Design and application of nickel-titanium olecranon memory connector in treatment of olecranon fractures: a prospective randomized controlled trial. Int Orthop 37(6):1099–1105

    Article  Google Scholar 

  72. Chan WY et al (2018) Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng 46(8):1194–1205

    Article  Google Scholar 

  73. Abduljabbar FH et al (2017) Factors associated with clinical outcomes after lumbar interbody fusion with a porous nitinol implant. Glob Spine J 7(8):780–786

    Article  Google Scholar 

  74. Ferrier M et al (2019) Radiographic and clinical comparison of proximal interphalangeal joint arthrodesis between a static and dynamic implant. J Foot Ankle Surg 58(4):657–662

    Article  Google Scholar 

  75. Payo-Ollero J et al (2019) The efficacy of an intramedullary nitinol implant in the correction of claw toe or hammertoe deformities. Arch Orthop Trauma Surg 139(12):1681–1690

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Jeffrey D. Seybold, M.D., and Dr. L. Daniel Latt, M.D., Ph.D., for use of clinical images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Gall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of Shape Memory and Superelasticity to honor Prof. Dr.-Ing. Gunther Eggeler. This special issue was organized by Prof. Hüseyin Sehitoglu, University of Illinois at Urbana-Champaign, and Prof. Dr.-Ing. Hans Jürgen Maier, Leibniz Universität Hannover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safranski, D., Dupont, K. & Gall, K. Pseudoelastic NiTiNOL in Orthopaedic Applications. Shap. Mem. Superelasticity 6, 332–341 (2020). https://doi.org/10.1007/s40830-020-00294-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-020-00294-y

Keywords

Navigation