Skip to main content
Log in

Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design

金属氧化物中的氧空位: 先进催化剂设计的新进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Energy crisis and environmental problems urgently drive the proposal of new strategies to improve human wellbeing and assist sustainable development. To this end, scientists have explored many metal oxides-based photocatalysts with high stability, low cost, earth abundance, and potentially high catalytic activity relevant for key applications such as H2O splitting, CO2 reduction, N2 fixation, and advanced oxidation of pollutants. In these metal oxides, oxygen vacancies (OVs) are ubiquitous and intrinsic defects with pronounced impacts on the physicochemical properties of the catalysts, which may open new opportunities for obtaining efficient metal oxides. The thorough understanding of the structural and electronic nature of OVs is necessary to determine how they serve as catalytically active sites. In this review, we summarize the origin of OVs, the strategies to introduce OVs, as well as the fundamental structure-activity relationships to relate these crystal defects to catalyst properties including light absorption, charge separation, etc. We emphasize the mechanism of OVs formation and their effects on the intrinsic catalytic characteristics of the metal oxides. We also present some multicomponent catalytic platforms where OVs contribute to catalysis via synergy. Finally, opportunities and challenges on engineering defects in photocatalysts are summarized to highlight the future directions of this research field.

摘要

高效、 稳定的催化材料有望解决日益严峻的环境污染和能源危机问题. 金属氧化物具有高稳定性、 低成本以及高催化活性等优点, 在能源转换和环境净化等领域有广阔的应用前景, 已广泛应用于H2O裂解、 CO2还原、 固氮以及污染物的高级氧化等催化领域中. 氧空位作为金属氧化物中普遍存在的一种内在缺陷, 被证实可显著影响甚至改变材料的物理化学性质, 是调控催化剂结构和催化性能的有效手段. 深入了解催化材料氧空位的调节以及氧空位对催化性能的作用机制, 为设计出高效金属氧化物催化剂提供重要理论基础. 本文综述了近年来调控氧空位的基本原理和控制因素, 介绍了氧空位的结构与催化活性的基本关系, 包括如何影响材料的光吸收、 电荷分离和反应物的吸附活化等, 着重介绍了氧空位的形成机制及其对金属氧化物催化特性的影响. 同时, 我们还对多组分催化过程中, 氧空位与其他类型催化组分间的协同催化机制进行了总结. 最后, 本文提出了材料缺陷工程在催化领域面临的机遇和挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kong M, Li Y, Chen X, et al. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J Am Chem Soc, 2011, 133: 16414–16417

    CAS  Google Scholar 

  2. Xu F, Zhu B, Cheng B, et al. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv Opt Mater, 2018, 6: 1800911

    Google Scholar 

  3. Xu Z, Yu J. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale, 2011, 3: 3138–3144

    CAS  Google Scholar 

  4. Low J, Dai B, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater, 2019, 31: 1802981

    Google Scholar 

  5. Xu Z, Zheng R, Chen Y, et al. Ordered mesoporous Fe/TiO2 with light enhanced photo-Fenton activity. Chin J Catal, 2019, 40: 631–637

    CAS  Google Scholar 

  6. Huttenhofer L, Eckmann F, Lauri A, et al. Anapole excitations in oxygen-vacancy-rich TiO2x nanoresonators: tuning the absorption for photocatalysis in the visible spectrum. ACS Nano, 2020, 14: 2456–2464

    Google Scholar 

  7. Wan J, Chen W, Jia C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater, 2018, 30: 1705369

    Google Scholar 

  8. Li X, Liu S, Fan K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater, 2018, 8: 1800101

    Google Scholar 

  9. Yu W, Zhang J, Peng T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B-Environ, 2016, 181: 220–227

    CAS  Google Scholar 

  10. Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater, 2017, 16: 454–460

    CAS  Google Scholar 

  11. Xu Q, Zhu B, Jiang C, et al. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol RRL, 2018, 2: 1800006

    Google Scholar 

  12. Auxilia FM, Ishihara S, Mandal S, et al. Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates. Adv Mater, 2014, 26: 4481–4485

    CAS  Google Scholar 

  13. Gu Z, Yang N, Han P, et al. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods, 2018, 3: 1800449

    Google Scholar 

  14. Guo S, Jiang Y, Li L, et al. Thin CuOx-based nanosheets for efficient phenol removal benefitting from structural memory and ion exchange of layered double oxides. J Mater Chem A, 2018, 6: 4167–4178

    CAS  Google Scholar 

  15. Pastrian FAC, da Silva AGM, Dourado AHB, et al. Why could the nature of surface facets lead to differences in the activity and stability of Cu2O-based electrocatalytic sensors? ACS Catal, 2018, 8: 6265–6272

    CAS  Google Scholar 

  16. Lee S, Nam G, Sun J, et al. Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew Chem Int Ed, 2016, 55: 8599–8604

    CAS  Google Scholar 

  17. Wang X, Zhou Z, Liang Z, et al. Photochemical synthesis of the Fe0/C3N4/MoS2 heterostructure as a highly active and reusable photocatalyst. Appl Surf Sci, 2017, 423: 225–235

    CAS  Google Scholar 

  18. Chen S, Wang X, Fan L, et al. The dynamic phase transition modulation of ion-liquid gating VO2 thin film: formation, diffusion, and recovery of oxygen vacancies. Adv Funct Mater, 2016, 26: 3532–3541

    CAS  Google Scholar 

  19. Hou T, Xiao Y, Cui P, et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv Energy Mater, 2019, 9: 1902319

    CAS  Google Scholar 

  20. Jia K, Ye J, Zhuang G, et al. Well-defined Cu2O/Cu3(BTC)2 sponge architecture as efficient phenolics scavenger: synchronous etching and reduction of MOFs in confined-pH NH3⋅H2O. Small, 2019, 15: 1805478

    Google Scholar 

  21. Ma L, Chen S, Pei Z, et al. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacanciesrich cobalt oxide. ACS Nano, 2018, 12: 8597–8605

    CAS  Google Scholar 

  22. Sun Y, Wang H, Xing Q, et al. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin J Catal, 2019, 40: 647–655

    CAS  Google Scholar 

  23. Ortiz-Medina J, Wang Z, Cruz-Silva R, et al. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv Mater, 2019, 31: 1805717

    Google Scholar 

  24. Tompkins FC. Superficial chemistry and solid imperfections. Nature, 1960, 186: 3–6

    Google Scholar 

  25. Deb SK, Chopoorian JA. Optical properties and color-center formation in thin films of molybdenum trioxide. J Appl Phys, 1966, 37: 4818–4825

    CAS  Google Scholar 

  26. Tohmon R, Mizuno H, Ohki Y, et al. Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy. Phys Rev B, 1989, 39: 1337–1345

    CAS  Google Scholar 

  27. Kevane CJ. Oxygen vacancies and electrical conduction in metal oxides. Phys Rev, 1964, 133: A1431–A1436

    Google Scholar 

  28. Sawada H, Kawakami K. Electronic structure of oxygen vacancy in Ta2O5. J Appl Phys, 1999, 86: 956–959

    CAS  Google Scholar 

  29. Hughes AE. Production of oxygen vacancies by elastic collisions in alkaline earth oxides. J Phys Colloques, 1973, 34: C9–515–C9–518

    Google Scholar 

  30. Iguchi E, Yajima K. Diffusion of oxygen vacancies in reduced rutile (TiO2). J Phys Soc Jpn, 1972, 32: 1415–1421

    CAS  Google Scholar 

  31. Metselaar R, Larsen PK. Diffusion of oxygen vacancies in yttrium iron garnet investigated by dynamic conductivity measurements. J Phys Chem Solids, 1976, 37: 599–605

    CAS  Google Scholar 

  32. Over H, Kim YD, Seitsonen AP, et al. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science, 2000, 287: 1474–1476

    CAS  Google Scholar 

  33. Jiang Y. Kinetic study of the formation of oxygen vacancy on lanthanum manganite electrodes. J Electrochem Soc, 1998, 145: 373

    CAS  Google Scholar 

  34. Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750

    CAS  Google Scholar 

  35. Ou G, Xu Y, Wen B, et al. Tuning defects in oxides at room temperature by lithium reduction. Nat Commun, 2018, 9: 1302

    Google Scholar 

  36. Wang G, Ling Y, Wang H, et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci, 2012, 5: 6180–6187

    CAS  Google Scholar 

  37. Kropp T, Lu Z, Li Z, et al. Anionic single-atom catalysts for CO oxidation: support-independent activity at low temperatures. ACS Catal, 2019, 9: 1595–1604

    CAS  Google Scholar 

  38. Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc, 2014, 136: 15670–15675

    CAS  Google Scholar 

  39. Bao J, Zhang X, Fan B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed, 2015, 54: 7399–7404

    CAS  Google Scholar 

  40. Rodriguez JA, Ma S, Liu P, et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science, 2007, 318: 1757–1760

    CAS  Google Scholar 

  41. Liu X, Zhou K, Wang L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc, 2009, 131: 3140–3141

    CAS  Google Scholar 

  42. Maimaiti Y, Nolan M, Elliott SD. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys Chem Chem Phys, 2014, 16: 3036–3046

    CAS  Google Scholar 

  43. Dvořak F, Szabova L, Johanek V, et al. Bulk hydroxylation and effective water splitting by highly reduced cerium oxide: the role of O vacancy coordination. ACS Catal, 2018, 8: 4354–4363

    Google Scholar 

  44. Corby S, Francas L, Selim S, et al. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J Am Chem Soc, 2018, 140: 16168–16177

    CAS  Google Scholar 

  45. Qi L, Yu Q, Dai Y, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl Catal B-Environ, 2012, 119–120: 308–320

    Google Scholar 

  46. Saavedra J, Pursell CJ, Chandler BD. CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common waterassisted mechanism. J Am Chem Soc, 2018, 140: 3712–3723

    CAS  Google Scholar 

  47. He C, Yu Y, Shen Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Appl Surf Sci, 2014, 297: 59–69

    CAS  Google Scholar 

  48. Wang Z, Wen B, Hao Q, et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J Am Chem Soc, 2015, 137: 9146–9152

    CAS  Google Scholar 

  49. Wang H, Yong D, Chen S, et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J Am Chem Soc, 2018, 140: 1760–1766

    CAS  Google Scholar 

  50. Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 2012, 24: 229–251

    CAS  Google Scholar 

  51. Kotiuga M, Zhang Z, Li J, et al. Carrier localization in perovskite nickelates from oxygen vacancies. Proc Natl Acad Sci USA, 2019, 116: 21992–21997

    CAS  Google Scholar 

  52. Vikrant KSN, Chueh WC, Garcia RE. Charged interfaces: electrochemical and mechanical effects. Energy Environ Sci, 2018, 11: 1993–2000

    CAS  Google Scholar 

  53. Liu L, Mei Z, Tang A, et al. Oxygen vacancies: The origin of ntype conductivity in ZnO. Phys Rev B, 2016, 93: 235305

    Google Scholar 

  54. Develos-Bagarinao K, De Vero J, Kishimoto H, et al. Multilayered LSC and GDC: an approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells. Nano Energy, 2018, 52: 369–380

    CAS  Google Scholar 

  55. Huo WC, Dong X, Li JY, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem Eng J, 2019, 361: 129–138

    CAS  Google Scholar 

  56. Chen CF, King G, Dickerson RM, et al. Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2015, 13: 423–432

    CAS  Google Scholar 

  57. Campbell CT. Waltzing with O2. Science, 2003, 299: 357

    CAS  Google Scholar 

  58. Rasmussen MD, Molina LM, Hammer B. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. J Chem Phys, 2004, 120: 988–997

    CAS  Google Scholar 

  59. Ye J, Liu C, Mei D, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): A DFT study. ACS Catal, 2013, 3: 1296–1306

    CAS  Google Scholar 

  60. Zhao Y, Zhao Y, Shi R, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv Mater, 2019, 31: 1806482

    Google Scholar 

  61. Deml AM, Stevanović V, Muhich CL, et al. Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy Environ Sci, 2014, 7: 1996–2004

    CAS  Google Scholar 

  62. Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281

    CAS  Google Scholar 

  63. Park B, Ho D, Kwon G, et al. Solution-processed rad-hard amorphous metal-oxide thin-film transistors. Adv Funct Mater, 2018, 28: 1802717

    Google Scholar 

  64. Wu J, Li X, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem, 2018, 130: 8855–8859

    Google Scholar 

  65. Tao L, Shi Y, Huang YC, et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy, 2018, 53: 604–612

    CAS  Google Scholar 

  66. Chen G, Georgieva V, Godfroid T, et al. Plasma assisted catalytic decomposition of CO2. Appl Catal B-Environ, 2016, 190: 115–124

    CAS  Google Scholar 

  67. Pan J, Ganesan R, Shen H, et al. Plasma-modified SnO2 nanowires for enhanced gas sensing. J Phys Chem C, 2010, 114: 8245–8250

    CAS  Google Scholar 

  68. Bruno FY, Tornos J, Gutierrez del Olmo M, et al. Anisotropic magnetotransport in SrTiO3 surface electron gases generated by Ar+ irradiation. Phys Rev B, 2011, 83: 245120

    Google Scholar 

  69. Brusa RS, Karwasz GP, Mariotto G, et al. Structural evolution in Ar+ implanted Si-rich silicon oxide. J Appl Phys, 2003, 94: 7483–7492

    CAS  Google Scholar 

  70. Zhu C, Li C, Zheng M, et al. Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl Mater Interfaces, 2015, 7: 22355–22363

    CAS  Google Scholar 

  71. Bose S, Mandal S, Barua AK, et al. Properties of boron doped ZnO films prepared by reactive sputtering method: application to amorphous silicon thin film solar cells. J Mater Sci Tech, 2019

    Google Scholar 

  72. Kuwahara Y, Yoshimura Y, Haematsu K, et al. Mild deoxygenation of sulfoxides over plasmonic molybdenum oxide hybrid with dramatic activity enhancement under visible light. J Am Chem Soc, 2018, 140: 9203–9210

    CAS  Google Scholar 

  73. Qi K, Cheng B, Yu J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd, 2017, 727: 792–820

    CAS  Google Scholar 

  74. Fujita T, Ishida T, Shibamoto K, et al. CO oxidation over Au/ ZnO: Unprecedented change of the reaction mechanism at low temperature caused by a different O2 activation process. ACS Catal, 2019, 9: 8364–8372

    CAS  Google Scholar 

  75. Faisal M, Khan SB, Rahman MM, et al. Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor. J Mater Sci Tech, 2011, 27: 594–600

    CAS  Google Scholar 

  76. Meng L, Tian W, Wu F, et al. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting. J Mater Sci Tech, 2019, 35: 1740–1746

    Google Scholar 

  77. Liu C, Zhu X, Wang P, et al. Defects and interface states related photocatalytic properties in reduced and subsequently nitridized Fe3O4/TiO2. J Mater Sci Tech, 2018, 34: 931–941

    Google Scholar 

  78. Zhou P, Wu J, Yu W, et al. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl Surf Sci, 2014, 319: 167–172

    CAS  Google Scholar 

  79. Liu J, Li N, Dong Q, et al. Tailoring electrical property of the lowtemperature processed SnO2 for high-performance perovskite solar cells. Sci China Mater, 2019, 62: 173–180

    CAS  Google Scholar 

  80. Ye KH, Wang Z, Li H, et al. A novel CoOOH/(Ti,C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Sci China Mater, 2018, 61: 887–894

    CAS  Google Scholar 

  81. Feibelman PJ, Knotek ML. Reinterpretation of electron-stimulated desorption data from chemisorption systems. Phys Rev B, 1978, 18: 6531–6539

    CAS  Google Scholar 

  82. von Soosten M, Christensen DV, Eom CB, et al. On the emergence of conductivity at SrTiO3-based oxide interfaces—an in-situ study. Sci Rep, 2019, 9: 1–7

    Google Scholar 

  83. Hou J, Cao S, Wu Y, et al. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30: 59–68

    CAS  Google Scholar 

  84. Lv K, Xiang Q, Yu J. Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets. Appl Catal B-Environ, 2011, 104: 275–281

    CAS  Google Scholar 

  85. Xu HY, Huang YH, Liu S, et al. Effects of annealing ambient on oxygen vacancies and phase transition temperature of VO2 thin films. RSC Adv, 2016, 6: 79383–79388

    CAS  Google Scholar 

  86. Hou L, Zhang M, Guan Z, et al. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Appl Surf Sci, 2018, 428: 640–647

    CAS  Google Scholar 

  87. Liang Q, Guo Y, Zhang N, et al. Improved water-splitting performances of CuW1−xMoxO4 photoanodes synthesized by spray pyrolysis. Sci China Mater, 2018, 61: 1297–1304

    CAS  Google Scholar 

  88. Schlexer P, Widmann D, Behm RJ, et al. CO oxidation on a Au/ TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. ACS Catal, 2018, 8: 6513–6525

    CAS  Google Scholar 

  89. Tong Y, Chen P, Zhang M, et al. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal, 2018, 8: 1–7

    Google Scholar 

  90. Dawson JA, Chen H, Tanaka I. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary. ACS Appl Mater Interfaces, 2015, 7: 1726–1734

    CAS  Google Scholar 

  91. Tan H, Zhao Z, Zhu WB, et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl Mater Interfaces, 2014, 6: 19184–19190

    CAS  Google Scholar 

  92. Jaiswar S, Mandal KD. Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J Phys Chem C, 2017, 121: 19586–19601

    CAS  Google Scholar 

  93. Jiang ZL, Xu GL, Yu Z, et al. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower. Nano Energy, 2019, 64: 103896

    CAS  Google Scholar 

  94. Santara B, Giri PK, Imakita K, et al. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale, 2013, 5: 5476–5488

    CAS  Google Scholar 

  95. Zhang W, Cai L, Cao S, et al. Interfacial lattice-strain-driven generation of oxygen vacancies in an aerobic-annealed TiO2(B) electrode. Adv Mater, 2019, 31: 1906156

    CAS  Google Scholar 

  96. Liu WT, Wu BH, Lai YT, et al. Enhancement of water splitting by controlling the amount of vacancies with varying vacuum level in the synthesis system of SnO2−x/In2O3−y heterostructure as photocatalyst. Nano Energy, 2018, 47: 18–25

    CAS  Google Scholar 

  97. Lv Y, Pan C, Ma X, et al. Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Appl Catal B-Environ, 2013, 138–139: 26–32

    Google Scholar 

  98. Yang J, Lee J, Lee J, et al. Oxygen annealing of the ZnO nanoparticle layer for the high-performance PbS colloidal quantumdot photovoltaics. J Power Sources, 2019, 421: 124–131

    CAS  Google Scholar 

  99. Zhu G, Zhu J, Jiang W, et al. Surface oxygen vacancy induced α- MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B-Environ, 2017, 209: 729–737

    CAS  Google Scholar 

  100. Xing M, Zhang J, Chen F, et al. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun, 2011, 47: 4947–4949

    CAS  Google Scholar 

  101. Liu D, Wang C, Yu Y, et al. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem, 2019, 5: 376–389

    CAS  Google Scholar 

  102. He W, Sun Y, Jiang G, et al. Defective Bi4MoO9/Bi metal core/ shell heterostructure: enhanced visible light photocatalysis and reaction mechanism. Appl Catal B-Environ, 2018, 239: 619–627

    CAS  Google Scholar 

  103. Lee L, Kang B, Han S, et al. A generalizable top-down nanostructuring method of bulk oxides: sequential oxygen-nitrogen exchange reaction. Small, 2018, 14: 1801124

    Google Scholar 

  104. Zhou X, Shen Q, Yuan K, et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J Am Chem Soc, 2018, 140: 554–557

    CAS  Google Scholar 

  105. Selcuk S, Zhao X, Selloni A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat Mater, 2018, 17: 923–928

    CAS  Google Scholar 

  106. Bielz T, Lorenz H, Jochum W, et al. Hydrogen on In2O3: Reducibility, bonding, defect formation, and reactivity. J Phys Chem C, 2010, 114: 9022–9029

    CAS  Google Scholar 

  107. Lv Y, Liu Y, Zhu Y, et al. Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J Mater Chem A, 2014, 2: 1174–1182

    CAS  Google Scholar 

  108. Zhu G, Lin T, Lu X, et al. Black brookite titania with high solar absorption and excellent photocatalytic performance. J Mater Chem A, 2013, 1: 9650–9653

    CAS  Google Scholar 

  109. Amano F, Nakata M. High-temperature calcination and hydrogen reduction of rutile TiO2: a method to improve the photocatalytic activity for water oxidation. Appl Catal B-Environ, 2014, 158–159: 202–208

    Google Scholar 

  110. Wang Y, Feng C, Zhang M, et al. Enhanced visible light photo-catalytic activity of N-doped TiO2 in relation to single-electrontrapped oxygen vacancy and doped-nitrogen. Appl Catal B-Environ, 2010, 100: 84–90

    CAS  Google Scholar 

  111. Liu K, Zhang W, Lei F, et al. Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy, 2016, 30: 810–817

    CAS  Google Scholar 

  112. Maqbool Q, Srivastava A. Benign synthesis of black microspheres of anatase TiO2 with paramagnetic oxygen vacancies through NH3 treatment. Chem Eur J, 2017, 23: 13864–13868

    CAS  Google Scholar 

  113. Chen H, Yang M, Tao S, et al. Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Appl Catal B-Environ, 2017, 209: 648–656

    CAS  Google Scholar 

  114. Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater, 2017, 29: 1606793

    Google Scholar 

  115. Li J, Liang Z, Guo L, et al. Flower-like Bi2WO6 with oxygen vacancies achieving enhanced photoelectrocatalytic performance. Mater Lett, 2018, 223: 93–96

    CAS  Google Scholar 

  116. Yang J, Hu S, Fang Y, et al. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal, 2019, 9: 9751–9763

    CAS  Google Scholar 

  117. Werner K, Weng X, Calaza F, et al. Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H2 interaction with CeO2 (111). J Am Chem Soc, 2017, 139: 17608–17616

    CAS  Google Scholar 

  118. Xu W, Lyu F, Bai Y, et al. Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction. Nano Energy, 2018, 43: 110–116

    CAS  Google Scholar 

  119. Bai Y, Ye L, Chen T, et al. Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl Mater Interfaces, 2016, 8: 27661–27668

    CAS  Google Scholar 

  120. Cai Z, Bi Y, Hu E, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater, 2018, 8: 1701694

    Google Scholar 

  121. Li X, Ma J, Yang L, et al. Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition. Environ Sci Technol, 2018, 52: 12685–12696

    CAS  Google Scholar 

  122. Jia J, Zhang P, Chen L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B-Environ, 2016, 189: 210–218

    CAS  Google Scholar 

  123. Baeumer C, Funck C, Locatelli A, et al. In-gap states and bandlike transport in memristive devices. Nano Lett, 2018, 19: 54–60

    Google Scholar 

  124. Setvin M, Aschauer U, Scheiber P, et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science, 2013, 341: 988–991

    CAS  Google Scholar 

  125. Tsai MC, Nguyen TT, Akalework NG, et al. Interplay between molybdenum dopant and oxygen vacancies in a TiO2 support enhances the oxygen reduction reaction. ACS Catal, 2016, 6: 6551–6559

    CAS  Google Scholar 

  126. Wei J, Cheng N, Liang Z, et al. Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed in situ through metal-ion (M = W or Mo) doping. J Mater Chem A, 2018, 6: 23336–23344

    CAS  Google Scholar 

  127. Jiang H, Liu J, Li M, et al. Facile synthesis of C-decorated Fe, N co-doped TiO2 with enhanced visible-light photocatalytic activity by a novel co-precursor method. Chin J Catal, 2018, 39: 747–759

    CAS  Google Scholar 

  128. Kim JK, Chai SU, Ji Y, et al. Resolving hysteresis in perovskite solar cells with rapid flame-processed cobalt-doped TiO2. Adv Energy Mater, 2018, 8: 1801717

    Google Scholar 

  129. Nolan M. Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations. J Mater Chem, 2011, 21: 9160–9168

    CAS  Google Scholar 

  130. Wang Z, You Y, Yuan J, et al. Nickel-doped La0.8Sr0.2Mn1–xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium–air batteries. ACS Appl Mater Interfaces, 2016, 8: 6520–6528

    CAS  Google Scholar 

  131. Zhang T, Wu MY, Yan DY, et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 2018, 43: 103–109

    CAS  Google Scholar 

  132. Ling T, Yan DY, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat Commun, 2016, 7: 12876

    CAS  Google Scholar 

  133. Wang Y, Chen Z, Han P, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal, 2018, 8: 7113–7119

    CAS  Google Scholar 

  134. Chen C, Xu K, Ji X, et al. Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO2. J Mater Chem A, 2015, 3: 12461–12467

    CAS  Google Scholar 

  135. McFarland EW, Metiu H. Catalysis by doped oxides. Chem Rev, 2013, 113: 4391–4427

    CAS  Google Scholar 

  136. Wang J, Tafen DN, Lewis JP, et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc, 2009, 131: 12290–12297

    CAS  Google Scholar 

  137. Hensel J, Wang G, Li Y, et al. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett, 2010, 10: 478–483

    CAS  Google Scholar 

  138. Tang K, Mu X, van Aken PA, et al. “Nano-pearl-string” TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater, 2013, 3: 49–53

    CAS  Google Scholar 

  139. Meng Y, Chen J, Wang Y, et al. (N, F)-codoped TiO2 nanocrystals as visible light-activated photocatalyst. J Mater Sci Technol, 2009, 25: 73–76

    CAS  Google Scholar 

  140. Li X, Wei J, Li Q, et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater, 2018, 28: 1800886

    Google Scholar 

  141. Sun Z, Xu L, Dong C, et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy, 2019, 63: 103887

    CAS  Google Scholar 

  142. Sun J, Guo N, Shao Z, et al. A Facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv Energy Mater, 2018, 8: 1800980

    Google Scholar 

  143. Qu Z, Bu Y, Qin Y, et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene. Appl Catal BEnviron, 2013, 132–133: 353–362

    Google Scholar 

  144. Schilling C, Hess C. Elucidating the role of support oxygen in the water–gas shift reaction over ceria-supported gold catalysts using operando spectroscopy. ACS Catal, 2018, 9: 1159–1171

    Google Scholar 

  145. Hare BJ, Maiti D, Daza YA, et al. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures. ACS Catal, 2018, 8: 3021–3029

    CAS  Google Scholar 

  146. Nolan M, Deskins NA, Schwartzenberg KC, et al. Local interfacial structure influences charge localization in titania composites: beyond the band alignment paradigm. J Phys Chem C, 2016, 120: 1808–1815

    CAS  Google Scholar 

  147. Seok TJ, Liu Y, Jung HJ, et al. Field-effect device using quasi-two-dimensional electron gas in mass-producible atomic-layer-deposited Al2O3/TiO2 ultrathin (<10 nm) film heterostructures. ACS Nano, 2018, 12: 10403–10409

    CAS  Google Scholar 

  148. Zhong Z, Xu PX, Kelly PJ. Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces. Phys Rev B, 2010, 82: 165127

    Google Scholar 

  149. Qiu B, Wang C, Zhang N, et al. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal, 2019, 9: 6484–6490

    CAS  Google Scholar 

  150. Veal BW, Kim SK, Zapol P, et al. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures. Nat Commun, 2016, 7: 11892

    CAS  Google Scholar 

  151. Zhou Y, Zhang Z, Fang Z, et al. Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proc Natl Acad Sci USA, 2019, 116: 10232–10237

    CAS  Google Scholar 

  152. Yang Z, Lu Z, Luo G, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface. Phys Lett A, 2007, 369: 132–139

    CAS  Google Scholar 

  153. Chen S, Li L, Hu W, et al. Anchoring high-concentration oxygen vacancies at interfaces of CeO2x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater Interfaces, 2015, 7: 22999–23007

    CAS  Google Scholar 

  154. Gac W, Giecko G, Pasieczna-Patkowska S, et al. The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction. Catal Today, 2008, 137: 397–402

    CAS  Google Scholar 

  155. Ishida T, Murayama T, Taketoshi A, et al. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem Rev, 2019, 120: 464–525

    Google Scholar 

  156. Riva M, Kubicek M, Hao X, et al. Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat Commun, 2018, 9: 3710

    Google Scholar 

  157. Michalsky R, Botu V, Hargus CM, et al. Design principles for metal oxide redox materials for solar-driven isothermal fuel production. Adv Energy Mater, 2015, 5: 1401082

    Google Scholar 

  158. Hayashi E, Yamaguchi Y, Kamata K, et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5- furandicarboxylic acid. J Am Chem Soc, 2019, 141: 890–900

    CAS  Google Scholar 

  159. Gorlin Y, Lassalle-Kaiser B, Benck JD, et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc, 2013, 135: 8525–8534

    CAS  Google Scholar 

  160. Yu H, So YG, Ren Y, et al. Temperature-sensitive structure evolution of lithium–manganese-rich layered oxides for lithiumion batteries. J Am Chem Soc, 2018, 140: 15279–15289

    CAS  Google Scholar 

  161. Weng Z, Li J, Weng Y, et al. Surfactant-free porous nano-Mn3O4 as a recyclable Fenton-like reagent that can rapidly scavenge phenolics without H2O2. J Mater Chem A, 2017, 5: 15650–15660

    CAS  Google Scholar 

  162. Li H, Shang H, Li Y, et al. Interfacial charging–decharging strategy for efficient and selective aerobic NO oxidation on oxygen vacancy. Environ Sci Technol, 2019, 53: 6964–6971

    CAS  Google Scholar 

  163. Hu L, Peng Q, Li Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc, 2008, 130: 16136–16137

    CAS  Google Scholar 

  164. Zhang KHL, Sushko PV, Colby R, et al. Reversible nano-structuring of SrCrO3−δ through oxidation and reduction at low temperature. Nat Commun, 2014, 5: 4669

    CAS  Google Scholar 

  165. Xie Y, Wu J, Jing G, et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl Catal B-Environ, 2018, 239: 665–676

    CAS  Google Scholar 

  166. Tompsett DA, Parker SC, Islam MS. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. J Am Chem Soc, 2014, 136: 1418–1426

    CAS  Google Scholar 

  167. Huang W. Oxide nanocrystal model catalysts. Acc Chem Res, 2016, 49: 520–527

    CAS  Google Scholar 

  168. Wang B, Wang X, Lu L, et al. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catal, 2017, 8: 516–525

    Google Scholar 

  169. Xu Y, Zhou M, Zhang C, et al. Oxygen vacancies: effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38: 304–312

    CAS  Google Scholar 

  170. Gong L, Chng XYE, Du Y, et al. Enhanced catalysis of the electrochemical oxygen evolution reaction by iron(III) ions adsorbed on amorphous cobalt oxide. ACS Catal, 2017, 8: 807–814

    Google Scholar 

  171. Duan Y, Yu ZY, Hu SJ, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed, 2019, 58: 15772–15777

    CAS  Google Scholar 

  172. Lim J, Kim SH, Aymerich Armengol R, et al. Atomic-scale mapping of impurities in partially reduced hollow TiO2 nanowires. Angew Chem Int Ed, 2020, 59: 5651–5655

    CAS  Google Scholar 

  173. Cox JW, Foster GM, Jarjour A, et al. Defect manipulation to control ZnO micro-/nanowire-metal contacts. Nano Lett, 2018, 18: 6974–6980

    CAS  Google Scholar 

  174. Huang Y, Li K, Li S, et al. Ultrathin Bi2MoO6 nanosheets for photocatalysis: performance enhancement by atomic interfacial engineering. ChemistrySelect, 2018, 3: 7423–7428

    CAS  Google Scholar 

  175. Ding L, Wei R, Chen H, et al. Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl Catal B-Environ, 2015, 172–173: 91–99

    Google Scholar 

  176. Liao L, Lu HB, Li JC, et al. Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C, 2007, 111: 1900–1903

    CAS  Google Scholar 

  177. Zhou XD, Huebner W. Size-induced lattice relaxation in CeO2 nanoparticles. Appl Phys Lett, 2001, 79: 3512–3514

    CAS  Google Scholar 

  178. Petrie JR, Mitra C, Jeen H, et al. Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Adv Funct Mater, 2016, 26: 1564–1570

    CAS  Google Scholar 

  179. Iglesias L, Sarantopoulos A, Magen C, et al. Oxygen vacancies in strained SrTiO3 thin films: Formation enthalpy and manipulation. Phys Rev B, 2017, 95: 165138

    Google Scholar 

  180. Rahman MA, Thomas JP, Leung KT. A delaminated defect-rich ZrO2 hierarchical nanowire photocathode for efficient photoelectrochemical hydrogen evolution. Adv Energy Mater, 2018, 8: 1701234

    Google Scholar 

  181. Riley C, Zhou S, Kunwar D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a singleatom promotor. J Am Chem Soc, 2018, 140: 12964–12973

    CAS  Google Scholar 

  182. Kalaev D, Defferriere T, Nicollet C, et al. Dynamic current-voltage analysis of oxygen vacancy mobility in praseodymium-doped ceria over wide temperature limits. Adv Funct Mater, 2020, 30: 1907402

    CAS  Google Scholar 

  183. Bowman DF, Cemal E, Lehner T, et al. Role of defects in determining the magnetic ground state of ytterbium titanate. Nat Commun, 2019, 10: 637

    CAS  Google Scholar 

  184. Murugappan K, Anderson EM, Teschner D, et al. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat Catal, 2018, 1: 960–967

    CAS  Google Scholar 

  185. Yang J, Bai H, Tan X, et al. IR and XPS investigation of visiblelight photocatalysis—Nitrogen-carbon-doped TiO2 film. Appl Surf Sci, 2006, 253: 1988–1994

    CAS  Google Scholar 

  186. Li J, Zhang M, Guan Z, et al. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B-Environ, 2017, 206: 300–307

    CAS  Google Scholar 

  187. Chuvenkova OA, Domashevskaya EP, Ryabtsev SV, et al. XANES and XPS investigations of surface defects in wire-like SnO2 crystals. Phys Solid State, 2015, 57: 153–161

    CAS  Google Scholar 

  188. Fan W, Li H, Zhao F, et al. Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem Commun, 2016, 52: 5316–5319

    CAS  Google Scholar 

  189. Xie S, Li M, Wei W, et al. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy, 2014, 10: 313–321

    CAS  Google Scholar 

  190. Guo M, Lu J, Wu Y, et al. UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir, 2011, 27: 3872–3877

    CAS  Google Scholar 

  191. Zhu G, Zhu J, Li W, et al. Tuning the K+ concentration in the tunnels of α-MnO2 to increase the content of oxygen vacancy for ozone elimination. Environ Sci Technol, 2018, 52: 8684–8692

    CAS  Google Scholar 

  192. Jin Y, Long J, Ma X, et al. Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Appl Catal B-Environ, 2019, 256: 117873

    CAS  Google Scholar 

  193. Elger AK, Hess C. Elucidating the mechanism of working SnO2 gas sensors using combined operando UV/Vis, Raman, and IR spectroscopy. Angew Chem Int Ed, 2019, 58: 15057–15061

    CAS  Google Scholar 

  194. Zhang N, Li X, Ye H, et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc, 2016, 138: 8928–8935

    CAS  Google Scholar 

  195. Tan L, Xu S‐, Wang Z, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew Chem, 2019, 131: 11986–11993

    Google Scholar 

  196. Feng H, Xu Z, Ren L, et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal, 2018, 8: 4288–4293

    CAS  Google Scholar 

  197. Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752–755

    CAS  Google Scholar 

  198. Zhang YC, Li Z, Zhang L, et al. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies. Appl Catal B-Environ, 2018, 224: 101–108

    CAS  Google Scholar 

  199. Shang H, Li M, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ Sci Technol, 2019, 53: 6444–6453

    CAS  Google Scholar 

  200. Hajiyani H, Pentcheva R. Surface termination and composition control of activity of the CoxNi1–xFe2O4 (001) surface for water oxidation: Insights from DFT+U calculations. ACS Catal, 2018, 8: 11773–11782

    CAS  Google Scholar 

  201. Fan K, Yu J, Ho W. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater Horiz, 2017, 4: 319–344

    CAS  Google Scholar 

  202. Zhang Y, Zhao H, Zhao X, et al. Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst. Sci China Mater, 2019, 62: 203–210

    CAS  Google Scholar 

  203. Li X, Wen J, Low J, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100

    Google Scholar 

  204. Chen M, Huang Y, Chu W. Exploring a broadened operating pH range for norfloxacin removal via simulated solar-light-mediated Bi2WO6 process. Chin J Catal, 2019, 40: 673–680

    CAS  Google Scholar 

  205. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci, 2017, 392: 658–686

    CAS  Google Scholar 

  206. Xu B, Zhang Q, Yuan S, et al. Synthesis and photocatalytic performance of yttrium-doped CeO2 with a porous broom-like hierarchical structure. Appl Catal B-Environ, 2016, 183: 361–370

    CAS  Google Scholar 

  207. Ji G, Yan S, Chen Y, et al. Spin injection from ferromagnetic semiconductor CoZnO into ZnO. J Mater Sci Technol, 2008, 24: 415–418

    CAS  Google Scholar 

  208. Wu F, Cao F, Liu Q, et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes. Sci China Mater, 2016, 59: 825–832

    CAS  Google Scholar 

  209. Yoon SH, Han DS, Kang U, et al. Effects of electrochemical synthetic conditions on surface property and photocatalytic performance of copper and iron-mixed p-type oxide electrodes. J Mater Sci Tech, 2018, 34: 1503–1510

    Google Scholar 

  210. Taylor NT, Davies FH, Davies SG, et al. The fundamental mechanism behind colossal permittivity in oxides. Adv Mater, 2019, 31: 1904746

    CAS  Google Scholar 

  211. Zhang S, Yang H, Huang H, et al. Unexpected ultrafast and high adsorption capacity of oxygen vacancy-rich WOx/C nanowire networks for aqueous Pb2+ and methylene blue removal. J Mater Chem A, 2017, 5: 15913–15922

    CAS  Google Scholar 

  212. Zhang G, Ji Q, Zhang K, et al. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy, 2019, 59: 10–16

    CAS  Google Scholar 

  213. Zhou H, Shi Y, Dong Q, et al. Surface oxygen vacancy-dependent electrocatalytic activity of W18O49 nanowires. J Phys Chem C, 2014, 118: 20100–20106

    CAS  Google Scholar 

  214. Song JW, Jeon EY, Song DH, et al. Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed, 2013, 52: 2534–2537

    CAS  Google Scholar 

  215. Maiti D, Hare BJ, Daza YA, et al. Earth abundant perovskite oxides for low temperature CO2 conversion. Energy Environ Sci, 2018, 11: 648–659

    CAS  Google Scholar 

  216. Szlachetko J, Kubas A, Cieślak AM, et al. Hidden gapless states during thermal transformations of preorganized zinc alkoxides to zinc oxide nanocrystals. Mater Horiz, 2018, 5: 905–911

    CAS  Google Scholar 

  217. Vu NN, Kaliaguine S, Do TO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlightdriven photocatalytic reduction of CO2 into fuels. Adv Funct Mater, 2019, 29: 1901825

    Google Scholar 

  218. Choudhury B, Chetri P, Choudhury A. Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles. J Exp Nanoscience, 2015, 10: 103–114

    CAS  Google Scholar 

  219. Sinhamahapatra A, Jeon JP, Kang J, et al. Oxygen-deficient zirconia (ZrO2−x): A new material for solar light absorption. Sci Rep, 2016, 6: 27218

    CAS  Google Scholar 

  220. Kumar S, Ojha AK. Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic ZrO2 nanostructures on methylene blue dye under ultra-violet radiation. J Alloys Compd, 2015, 644: 654–662

    CAS  Google Scholar 

  221. Dong L, Jia R, Xin B, et al. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci Rep, 2017, 7: 40160

    CAS  Google Scholar 

  222. An S, Zhang G, Wang T, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g- C3N4 ) for highly efficient catalytic advanced oxidation processes. ACS Nano, 2018, 12: 9441–9450

    CAS  Google Scholar 

  223. Ma Z, Li P, Ye L, et al. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J Mater Chem A, 2017, 5: 24995–25004

    CAS  Google Scholar 

  224. Chen D, Niu F, Qin L, et al. Defective BiFeO3 with surface oxygen vacancies: Facile synthesis and mechanism insight into photocatalytic performance. Sol Energy Mater Sol Cells, 2017, 171: 24–32

    CAS  Google Scholar 

  225. Kim M, Lee B, Ju H, et al. Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solardriven water splitting. Adv Mater, 2019, 31: 1903316

    Google Scholar 

  226. Hu S, Qiao P, Zhang L, et al. Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 239: 317–323

    CAS  Google Scholar 

  227. Geng Z, Kong X, Chen W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed, 2018, 57: 6054–6059

    CAS  Google Scholar 

  228. Ansari SA, Khan MM, Kalathil S, et al. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5: 9238–9246

    CAS  Google Scholar 

  229. Feng S, Wang T, Liu B, et al. Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew Chem Int Ed, 2020, 59: 2044–2048

    CAS  Google Scholar 

  230. Wang H, Zhang W, Li X, et al. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl Catal B-Environ, 2018, 225: 218–227

    CAS  Google Scholar 

  231. Lei F, Sun Y, Liu K, et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc, 2014, 136: 6826–6829

    CAS  Google Scholar 

  232. Yu H, Li J, Zhang Y, et al. Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew Chem Int Ed, 2019, 58: 3880–3884

    CAS  Google Scholar 

  233. Liu S, Yu J, Jaroniec M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem Mater, 2011, 23: 4085–4093

    CAS  Google Scholar 

  234. Selim S, Pastor E, Garcia-Tecedor M, et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J Am Chem Soc, 2019, 141: 18791–18798

    CAS  Google Scholar 

  235. Kisiel M, Brovko OO, Yildiz D, et al. Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces. Nat Commun, 2018, 9: 2946

    Google Scholar 

  236. Chikina A, Lechermann F, Husanu MA, et al. Orbital ordering of the mobile and localized electrons at oxygen-deficient LaAlO3/ SrTiO3 interfaces. ACS Nano, 2018, 12: 7927–7935

    CAS  Google Scholar 

  237. Anzai H, Takahashi T, Suzuki M, et al. Unusual oxygen partial pressure dependence of electrical transport of single-crystalline metal oxide nanowires grown by the vapor-liquid-solid process. Nano Lett, 2019, 19: 1675–1681

    CAS  Google Scholar 

  238. Ding J, Dai Z, Qin F, et al. Z-scheme BiO1−xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl Catal B-Environ, 2017, 205: 281–291

    CAS  Google Scholar 

  239. Sun X, Wu J, Li Q, et al. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs. Appl Catal B-Environ, 2017, 218: 80–90

    CAS  Google Scholar 

  240. Magyari-Kope B, Park SG, Lee HD, et al. First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides. J Mater Sci, 2012, 47: 7498–7514

    Google Scholar 

  241. Muller DA, Nakagawa N, Ohtomo A, et al. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature, 2004, 430: 657–661

    CAS  Google Scholar 

  242. Wang B, Zhang M, Cui X, et al. Unconventional route to oxygenvacancy- enabled highly efficient electron extraction and transport in perovskite solar cells. Angew Chem Int Ed, 2020, 59: 1611–1618

    CAS  Google Scholar 

  243. Jeong J, Aetukuri N, Graf T, et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science, 2013, 339: 1402–1405

    CAS  Google Scholar 

  244. Munoz-Garcia AB, Pavone M, Carter EA. Effect of antisite defects on the formation of oxygen vacancies in Sr2FeMoO6: Implications for ion and electron transport. Chem Mater, 2011, 23: 4525–4536

    CAS  Google Scholar 

  245. Tang X, Liu X, Zhang L, et al. Low crystallinity TiO2 film with inherent low oxygen vacancy for sensitized solar cells. Chem Phys, 2014, 441: 121–127

    CAS  Google Scholar 

  246. Wan L, Zhou Q, Wang X, et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat Catal, 2019, 2: 889–898

    CAS  Google Scholar 

  247. Kim HS, Jang A, Choi SY, et al. Vacancy-induced electronic structure variation of acceptors and correlation with proton conduction in perovskite oxides. Angew Chem Int Ed, 2016, 55: 13499–13503

    CAS  Google Scholar 

  248. Li H, Qin F, Yang Z, et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J Am Chem Soc, 2017, 139: 3513–3521

    CAS  Google Scholar 

  249. Tanveer M, Wu Y, Qadeer MA, et al. Atypical BiOCl/Bi2S3 hetero- structures exhibiting remarkable photo-catalyst response. Sci China Mater, 2018, 61: 101–111

    CAS  Google Scholar 

  250. Zhou Z, Liu J, Long R, et al. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J Am Chem Soc, 2017, 139: 6707–6717

    CAS  Google Scholar 

  251. Gan J, Lu X, Wu J, et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep, 2013, 3: 1021

    Google Scholar 

  252. Li L, Feng X, Nie Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal, 2015, 5: 4825–4832

    CAS  Google Scholar 

  253. Liu B, Li C, Zhang G, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal, 2018, 8: 10446–10456

    CAS  Google Scholar 

  254. Wang Q, Chen L, Guan S, et al. Ultrathin and vacancy-rich CoAllayered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal, 2018, 8: 3104–3115

    CAS  Google Scholar 

  255. Nie L, Yu J, Jaroniec M, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal Sci Technol, 2016, 6: 3649–3669

    CAS  Google Scholar 

  256. Goulas KA, Mironenko AV, Jenness GR, et al. Fundamentals of C–O bond activation on metal oxide catalysts. Nat Catal, 2019, 2: 269–276

    CAS  Google Scholar 

  257. Setvin M, Reticcioli M, Poelzleitner F, et al. Polarity compensation mechanisms on the perovskite surface KTaO3 (001). Science, 2018, 359: 572–575

    CAS  Google Scholar 

  258. Bobadilla LF, Santos JL, Ivanova S, et al. Unravelling the role of oxygen vacancies in the mechanism of the reverse water–gas shift reaction by operando DRIFTS and ultraviolet–visible spectroscopy. ACS Catal, 2018, 8: 7455–7467

    CAS  Google Scholar 

  259. Varandili SB, Huang J, Oveisi E, et al. Synthesis of Cu/CeO2−x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. ACS Catal, 2019, 9: 5035–5046

    CAS  Google Scholar 

  260. Martin O, Martin AJ, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed, 2016, 55: 6261–6265

    CAS  Google Scholar 

  261. Ji Y, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J Am Chem Soc, 2016, 138: 15896–15902

    CAS  Google Scholar 

  262. Li H, Li J, Ai Z, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Ed, 2018, 57: 122–138

    CAS  Google Scholar 

  263. Huang S, Zhu X, Cheng B, et al. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environ Sci-Nano, 2017, 4: 2215–2224

    CAS  Google Scholar 

  264. Heisig T, Baeumer C, Gries UN, et al. Oxygen exchange processes between oxide memristive devices and water molecules. Adv Mater, 2018, 30: 1800957

    Google Scholar 

  265. Li H, Shang J, Ai Z, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137: 6393–6399

    CAS  Google Scholar 

  266. Wang S, Hai X, Ding X, et al. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv Mater, 2017, 29: 1701774

    Google Scholar 

  267. Yang X, Wang S, Yang N, et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl Catal B-Environ, 2019, 259: 118088

    CAS  Google Scholar 

  268. Wang M, Shen M, Jin X, et al. Oxygen vacancy generation and stabilization in CeO2x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal, 2019, 9: 4573–4581

    CAS  Google Scholar 

  269. Jia H, Du A, Zhang H, et al. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J Am Chem Soc, 2019, 141: 5083–5086

    CAS  Google Scholar 

  270. Li C, Wang T, Zhao ZJ, et al. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew Chem Int Ed, 2018, 57: 5278–5282

    CAS  Google Scholar 

  271. Duan C, Li F, Zhang H, et al. Template synthesis of hierarchical porous metal–organic frameworks with tunable porosity. RSC Adv, 2017, 7: 52245–52251

    CAS  Google Scholar 

  272. Tan S, Ji Y, Zhao Y, et al. Molecular oxygen adsorption behaviors on the rutile TiO2 (110)-1×1 surface: An in situ study with lowtemperature scanning tunneling microscopy. J Am Chem Soc, 2011, 133: 2002–2009

    CAS  Google Scholar 

  273. Zhang J, Yin R, Shao Q, et al. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew Chem Int Ed, 2019, 58: 5609–5613

    CAS  Google Scholar 

  274. Huygh S, Bogaerts A, Neyts EC. How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). J Phys Chem C, 2016, 120: 21659–21669

    CAS  Google Scholar 

  275. Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis. Coord Chem Rev, 2013, 257: 2551–2564

    CAS  Google Scholar 

  276. Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev, 2014, 43: 547–564

    CAS  Google Scholar 

  277. Han Z, Choi C, Hong S, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl Catal BEnviron, 2019, 257: 117896

    CAS  Google Scholar 

  278. Jiang Z, Sun H, Wang T, et al. Nature-based catalyst for visiblelight- driven photocatalytic CO2 reduction. Energy Environ Sci, 2018, 11: 2382–2389

    CAS  Google Scholar 

  279. Lukashuk L, Yigit N, Rameshan R, et al. Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD. ACS Catal, 2018, 8: 8630–8641

    CAS  Google Scholar 

  280. Li H, Shang J, Zhu H, et al. Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal, 2016, 6: 8276–8285

    CAS  Google Scholar 

  281. Staykov A, Tellez H, Akbay T, et al. Oxygen activation and dissociation on transition metal free perovskite surfaces. Chem Mater, 2015, 27: 8273–8281

    CAS  Google Scholar 

  282. Lee S, Jin W, Kim SH, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew Chem, 2019, 131: 10588–10595

    Google Scholar 

  283. Schmitt R, Nenning A, Kraynis O, et al. A review of defect structure and chemistry in ceria and its solid solutions. Chem Soc Rev, 2020, 49: 554–592

    CAS  Google Scholar 

  284. Frei MS, Mondelli C, Cesarini A, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal, 2019, 10: 1133–1145

    Google Scholar 

  285. Tsoukalou A, Abdala PM, Stoian D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study. J Am Chem Soc, 2019, 141: 13497–13505

    CAS  Google Scholar 

  286. Hirakawa H, Hashimoto M, Shiraishi Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc, 2017, 139: 10929–10936

    CAS  Google Scholar 

  287. Wang Y, Oord R, van den Berg D, et al. Oxygen vacancies in reduced Rh/ and Pt/ceria for highly selective and reactive reduction of NO into N2 in excess of O2. ChemCatChem, 2017, 9: 2935–2938

    CAS  Google Scholar 

  288. Gao S, Sun Z, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun, 2017, 8: 14503

    CAS  Google Scholar 

  289. Gao P, Li S, Bu X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem, 2017, 9: 1019–1024

    CAS  Google Scholar 

  290. Nong S, Dong W, Yin J, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J Am Chem Soc, 2018, 140: 5719–5727

    CAS  Google Scholar 

  291. Jehannin M, Rao A, Colfen H. New horizons of nonclassical crystallization. J Am Chem Soc, 2019, 141: 10120–10136

    CAS  Google Scholar 

  292. Petel BE, Brennessel WW, Matson EM. Oxygen-atom vacancy formation at polyoxovanadate clusters: homogeneous models for reducible metal oxides. J Am Chem Soc, 2018, 140: 8424–8428

    CAS  Google Scholar 

  293. Hu X, Zhang Y, Wang B, et al. Novel g-C3N4/BiOClxI1−x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light. Appl Catal B-Environ, 2019, 256: 117789

    CAS  Google Scholar 

  294. Xie Z, Zhou J, Wang J, et al. Oxygen-atom vacancy formation at polyoxovanadate clusters: homogeneous models for reducible metal oxides. Appl Catal B-Environ, 2019, 253: 28–40

    CAS  Google Scholar 

  295. Liu Y, Miao C, Yang P, et al. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O. Appl Catal B-Environ, 2019, 244: 919–930

    CAS  Google Scholar 

  296. Chen J, Iyemperumal SK, Fenton T, et al. Synergy between defects, photoexcited electrons, and supported single atom catalysts for CO2 reduction. ACS Catal, 2018, 8: 10464–10478

    CAS  Google Scholar 

  297. Wu SM, Liu XL, Lian XL, et al. Homojunction of oxygen and titanium vacancies and its interfacial n-p effect. Adv Mater, 2018, 30: 1802173

    Google Scholar 

  298. Hegner FS, Forrer D, Galan-Mascaros JR, et al. Versatile nature of oxygen vacancies in bismuth vanadate bulk and (001) surface. J Phys Chem Lett, 2019, 10: 6672–6678

    CAS  Google Scholar 

  299. Wang Y, Cai J, Wu M, et al. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Appl Catal B-Environ, 2018, 239: 398–407

    CAS  Google Scholar 

  300. Chen Y, Cao X, Lin B, et al. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies. Appl Surf Sci, 2013, 264: 845–852

    CAS  Google Scholar 

  301. Zhang X, Fan C, Wang Y, et al. DFT+U predictions: The effect of oxygen vacancy on the structural, electronic and photocatalytic properties of Mn-doped BiOCl. Comput Mater Sci, 2013, 71: 135–145

    CAS  Google Scholar 

  302. Weaver JF, Zhang F, Pan L, et al. Vacancy-mediated processes in the oxidation of CO on PdO(101). Acc Chem Res, 2015, 48: 1515–1523

    CAS  Google Scholar 

  303. Jiang Y, Ning H, Tian C, et al. Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 229: 1–7

    Google Scholar 

  304. Wang J, Liu J, Zhang B, et al. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy, 2018, 53: 144–151

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (U1905215, 51772053 and 51672046).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhuang Z and Yu Y conceptualized the work, and wrote and revised the manuscript. Zhuang G and Chen Y collected and summarized the literatures, and contributed to the manuscript writing. Yu J revised the manuscript and offered creative proposal for improving the depth and coverage of the review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zanyong Zhuang  (庄赞勇), Yan Yu  (于岩) or Jiaguo Yu  (余家国).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Guoxin Zhuang received his BSc in materials science and engineering from Fuzhou University. He is currently pursuing his PhD degree at Fuzhou University under the supervision of Prof. Yu and Prof. Zhuang. His research focuses on the design of MOFs and catalysts for CO2 photoreduction.

Zanyong Zhuang received his BSc in chemistry from Xiamen University, and his PhD in 2011 from Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS). He became an associate researcher in FJIRSM, CAS in 2014. Currently he is an associate professor at Fuzhou University. His research interests include the design of lowdimensional nanostructures, nanocrystals growth and assembly, comprehensive utilization of solid waste, and the related catalytic topics.

Yan Yu received her BSc, MSc and PhD degrees from Fuzhou University. She was a postdoctoral fellow in FJIRSM, CAS, and became a Professor at Fuzhou University in 2011. Her research interests include semiconductors, photocatalysis, environmental purification materials, comprehensive utilization of solid waste, and the related topics.

Jiaguo Yu received his BSc and MSc degrees in chemistry from the Central China Normal University and Xi'an Jiaotong University, respectively, and his PhD in materials science in 2000 from Wuhan University of Technology. In 2000, he became a Professor at Wuhan University of Technology. He was a postdoctoral fellow at the Chinese University of Hong Kong from 2001 to 2004, a visiting scientist from 2005 to 2006 at the University of Bristol, and a visiting scholar from 2007 to 2008 at the University of Texas, Austin. His research interests include semiconductors, photocatalysis, photocatalytic hydrogen production, solar fuels, dye-sensitized solar cells, adsorption, CO2 capture, graphene, and the related topics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, G., Chen, Y., Zhuang, Z. et al. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Sci. China Mater. 63, 2089–2118 (2020). https://doi.org/10.1007/s40843-020-1305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1305-6

Keywords

Navigation