Skip to main content
Log in

Reducing the Ambulance Siren Noise for Distant Auscultation of the Lung Sound

  • Technical Note
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Ambulance sirens sound very loud for transportation safety. However, loud sounds interfere with the auscultation of lung sounds. This study proposed an auscultation system that includes (1) an ACER Aspire 17 notebook as a server; (2) a smart mobile as a wireless hotspot (HwaWei Amazing A6); and (3) an ACER Aspire 5 notebook as a client. National Instruments data socket software gives read and write privileges to the IP addresses of the server and client. This real-world distant auscultation system works. The real-time adaptive filter reduced siren noise of 60 dB in power intensity. Surprisingly, a previous simulation of the adaptive filter had performed a noise reduction of 60 dB. Therefore, this real-time remote auscultation system is a reliable device for the ambulance service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Stanton, N.A., Edworthy, J.: Human Factors in Auditory Warnings. Ashgate Publishing, Surrey (1999)

  2. Hole, J.W., Koos, K.A.: Human Anatomy. Wm. C. Brown Publishers, Dubuque (1991)

    Google Scholar 

  3. Khan, T.E.A., Vijayakumar, P.: Separating heart sound from lung sound using LabVIEW. Int. J. Comput. Electr. Eng. 2, 1793–8163 (2010)

    Google Scholar 

  4. Gnitecki, J., Moussavi, Z.M.K.: Separating heart sounds from lung sounds. IEEE Eng. Med. Biol. Mag. 26, 20–29 (2007)

    Article  Google Scholar 

  5. Patel, S.B., Callahan, T.F., Callahan, M.G., Jones, J.T., Graber, G.P., Foster, K.S., Glifort, K., Wodicka, G.R.: An adaptive noise reduction stethoscope for auscultation in high noise environments. J. Acoust. Soc. Am. 103, 2483–2491 (1998)

    Article  Google Scholar 

  6. Yasemin P.K., Serkan Y., Omer C.: A wavelet-based instrument for detection of crackles in pulmonary sounds. In: The 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 25–28 October, Istanbul, Turkey (2001)

  7. Fatma, Z.G., Bekir, K., Güneş, H.: Classification of asthmatic breath sounds by using wavelet transforms and neural networks. Int. J. Signal Process. Syst. 3, 106–111 (2015)

    Google Scholar 

  8. Hadjileontiadis, L.J.: A novel technique for denoising explosive lung sounds empirical mode decomposition and fractal dimension filter. IEEE Eng. Med. Biol. Mag. 26, 30–39 (2007)

    Article  Google Scholar 

  9. Hadjileontiadis, L.J., Rekanos, I.T.: Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Signal Process. Lett. 10, 311–314 (2003)

    Article  Google Scholar 

  10. Hadjileontiadis, L.J.: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: application results. IEEE Trans. Biomed. Eng. 52, 1050–1064 (2005)

    Article  Google Scholar 

  11. Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7, 286–297 (2007)

    Article  Google Scholar 

  12. Jingping, X., Durand, L.G., Pibarot, P.: Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model. IEEE Trans. Biomed. Eng. 48, 277–283 (2001)

    Article  Google Scholar 

  13. Olmez, T., Dokur, Z.: Classification of heart sounds using an artificial neural network. Pattern Recognit. Lett. 24, 617–629 (2003)

    Article  MATH  Google Scholar 

  14. Er, O., Temurtas, F., Tanrıkulu, A.Ç.: Tuberculosis disease diagnosis using artificial neural networks. J. Med. Syst. 34, 299–302 (2010)

    Article  Google Scholar 

  15. Er, O., Temurtas, F.A.: Study on chronic obstructive pulmonary disease diagnosis using multilayer neural networks. J. Med. Syst. 32, 429–432 (2008)

    Article  Google Scholar 

  16. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  17. Lu, B.Y., Hsueh, M.L., Hung, H.H., Lee, H.W., Yu, J.X., Wei, S.K.: Auscultation on the ambulance: a case study of adaptive filter application for the safety of detecting lung sound on the ambulance. J. Electr. Eng. 3, 203–211 (2015)

    Google Scholar 

  18. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (1996)

    Google Scholar 

  19. Yip, L., Zhang, Y.T.: Reduction of heart sounds from lung sound recordings by automated gain control and adaptive filtering techniques. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 2154–2156 (2001)

  20. Lu, B.Y., Wu, H.D.: Auscultation using modern mobile communication. Acoust. Aust. 43, 303–309 (2015)

    Article  Google Scholar 

  21. Lu, B.Y., Wu, H.D., Shih, S.R., Chong, F.C., Hsueh, M.L., Chen, Y.L.: Combination of frequency and amplitude modulated Model for the synthesis of normal and wheezing sounds. Aust. Phys. Eng. Sci. Med. 34, 449–457 (2011)

    Article  Google Scholar 

  22. Belloni, F., Giustina, D., Riva, M., Malcangi, M.: A new digital stethoscope with environmental noise cancellation. Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 (2010)

    Google Scholar 

  23. Pomerleau, A., Desbiens, A., Hodouin, D.: Development and evaluation of an auto-tuning and adaptive PID controller. Automatica 32, 71–82 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oh, C.S., Bang, H., Park, C.S.: Attitude control of a flexible launch vehicle using an adaptive notch filter: ground experiment. Control Eng. Pract. 16, 30–42 (2008)

    Article  Google Scholar 

  25. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. 29, 1–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yao G., Gao F., Wang C., Chen X.: Design and simulation based on Kalman filter fuzzy adaptive PID control for mold liquid level control system. In: IEEE Chinese Control and Decision Conference, pp. 6105–6109 (2009)

  27. Cben, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2, 302–309 (1991)

    Article  Google Scholar 

  28. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  29. Spriet, A., Proudler, I., Moonen, M., Wouters, J.: Adaptive feedback cancellation in hearing aids with the linear prediction of the desired signal. IEEE Trans. Signal Process. 53, 3749–3763 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chang, G.C., Lai, Y.F.: Performance evaluation and enhancement of lung sound recognition system in two real noisy environments. Comput. Methods Programs Biomed. 97, 141–150 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for valuable comments, and Professor Gwo-Ching Chang (Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan, the Republic of China) for providing sound data. Furthermore, the authors appreciate the project numbers MOST 103-2221-E-236-001, Ministry of Science and Technology, Taiwan, Republic of China, for the supports of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yuh Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, BY., Hsueh, ML. & Wu, HD. Reducing the Ambulance Siren Noise for Distant Auscultation of the Lung Sound. Acoust Aust 45, 381–387 (2017). https://doi.org/10.1007/s40857-017-0109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-017-0109-4

Keywords

Navigation