Skip to main content
Log in

Geometric structures and configurations of flags in orbits of real forms

  • Special Section: An Homage to Manfredo P. do Carmo
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This is an introduction and a survey on geometric structures modelled on closed orbits of real forms acting on spaces of flags. We focus on 3-manifolds and the flag space of all pairs of a point and a line containing it in \({\mathbb{P}}({\mathbb{C}}^3)\). It includes a description of general flag structures which are not necessarily flat and a combinatorial description of flat structures through configurations of flags in closed orbits of real forms. We also review volume and Chern–Simons invariants for those structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Acosta, M.: Spherical CR uniformization of Dehn surgeries of the Whitehead link complement. Geom. Topol. 23(5), 2593–2664 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of SL(3). Geom. Topol. 18(4), 1911–1971 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bergeron, N., Falbel, E., Guilloux, A., Koseleff, P.-V., Rouillier, F.: Local rigidity for PGL(3, C)-representations of 3-manifold groups. Exp. Math. 22(4), 410–420 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bloch, S.: Higher regulators, algebraic \(K\)-theory, and zeta functions of elliptic curves. In: CRM Monograph Series, 11. American Mathematical Society, Providence (2000)

  5. Bucher, M., Burger, M., Iozzi, A.: The bounded Borel class and 3-manifold groups. Duke Math. J. 167(17), 3129–3169 (2018)

    Article  MathSciNet  Google Scholar 

  6. Burns, D., Epstein, C.L.: A global invariant for three-dimensional CR-manifolds. Invent. Math. 92(2), 333–348 (1988)

    Article  MathSciNet  Google Scholar 

  7. Burns, D., Shnider, S.: Spherical hypersurfaces in complex manifolds. Invent. Math. 33, 223–246 (1976)

    Article  MathSciNet  Google Scholar 

  8. Cartan, E.: Sur les variétés à connexion projective. Bull. Soc. Math. Fr. 52, 205–241 (1924)

    Article  Google Scholar 

  9. Cartan, E.: Sur le groupe de la géométrie hypersphérique. Commun. Math. Helv. 4, 158–171 (1932)

    Article  Google Scholar 

  10. Casella, A.: Branched Cauchy–Riemann structures on once-punctured torus bundles. arXiv:1902.03662

  11. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math., vol. 1167, pp. 50–80, Springer, Berlin (1985)

  12. Chern, S.S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1974)

    Article  MathSciNet  Google Scholar 

  13. Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. (2) 99, 48–69 (1974)

    Article  MathSciNet  Google Scholar 

  14. http://curve.unhyperbolic.org/

  15. Deraux, M., Falbel, E.: Complex hyperbolic geometry of the figure-eight knot. Geom. Topol. 19, 237–293 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dimofte, T., Gabella, M., Goncharov, A.B.: K-decompositions and 3D gauge theories. J. High Energy Phys. 11, 151 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dupont, J.L.: The dilogarithm as a characteristic class for flat bundles. J. Pure Appl. Algebra 44, 137–164 (1987)

    Article  MathSciNet  Google Scholar 

  18. Dupont, J.L., Sah, C.H.: Scissors congruences. II. J. Pure Appl. Algebra 25(2), 159–195 (1982)

    Article  MathSciNet  Google Scholar 

  19. Dupont, J.L., Parry, W., Sah, C.H.: Homology of classical Lie groups made discrete, II, \(H_2\), \(H_3\), and relations with scissors congruences. J. Algebra 113, 215–260 (1988)

    Article  MathSciNet  Google Scholar 

  20. Falbel, E.: A volume function for Spherical CR Tetrahedra. Q. J. Math. 62(2), 397–415 (2011)

    Article  MathSciNet  Google Scholar 

  21. Falbel, E., Santos Thebaldi, R.: A flag structure on a cusped hyperbolic 3-manifold. Pac. J. Math. 278(1), 51–78 (2015)

    Article  MathSciNet  Google Scholar 

  22. Falbel, E., Wang, Q.: A combinatorial invariant for Spherical CR structures. Asian J. Math. 17(3), 391–422 (2013)

    Article  MathSciNet  Google Scholar 

  23. Falbel, E., Wang, Q.: Duality and invariants of representations of fundamental groups of 3-manifolds into PGL(3, C). J. Lond. Math. Soc. (2) 95, 1–22 (2017)

    Article  MathSciNet  Google Scholar 

  24. Falbel, E., Koseleff, P.-V., Rouillier, F.: Representations of fundamental groups of 3-manifolds into PGL(3, C): exact computations in low complexity. Geom. Dedic. 177, 229–255 (2015)

    Article  MathSciNet  Google Scholar 

  25. Falbel, E., Veloso, J.M.: Flag structures on real 3-manifolds. arXiv:1804.11096

  26. Fock, V.V., Goncharov, A.B.: Moduli spaces of convex projective structures on surfaces. Adv. Math. 208(1), 249–273 (2007)

    Article  MathSciNet  Google Scholar 

  27. Frenkel, E., Szenes, A.: Crystal bases, dilogarithm identities, and torsion in algebraic K-theory. J. Am. Math. Soc. 8(3), 629–664 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Fulton, W.: Algebraic curves. An introduction to algebraic geometry. Notes written with the collaboration of Richard Weiss. Mathematics Lecture Notes Series. W. A. Benjamin, Inc., New York (1969)

  29. Garoufalidis, S., Thurston, D., Zickert, C.: The complex volume of SL(n, C)-representations of 3-manifolds. Duke Math. J. 164(11), 2099–2160 (2015)

    Article  MathSciNet  Google Scholar 

  30. Garoufalidis, S., Goerner, M., Zickert, C.K.: Gluing equations for \(PGL (n,\mathbb{C })\)-representations of 3-manifolds. Algebra Geom. Topol. 15(1), 565–622 (2015)

    Article  MathSciNet  Google Scholar 

  31. Guilloux, A.: Deformation of hyperbolic manifolds in PGL(n, C) and discreteness of the peripheral representations. Proc. Am. Math. Soc. 143(5), 2215–2226 (2015)

    Article  MathSciNet  Google Scholar 

  32. Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. Graduate Studies in Mathematics, vol. 61. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  33. Jacobowitz, H.: An Introduction to CR Structures, vol. 32. American Mathematical Society, Providence, Rhode Island, Mathematical Surveys and Monographs (1990)

  34. Kaplansky, I.: Linear algebra and geometry. A second course. Reprint of the 1974 revised edition. Dover Publications, New York (2003)

  35. Khoi, V.T.: On the Burns–Epstein invariants of spherical CR 3-manifolds. Ann. Inst. Fourier (Grenoble) 61(2), 775–797 (2011)

    Article  MathSciNet  Google Scholar 

  36. Kirillov, N.A.: Dilogarithm identities. Progr. Theoret. Phys. Suppl. No. 118, 61–142 (1995)

    Article  MathSciNet  Google Scholar 

  37. Lichtenbaum, S.: Groups related to scissors-congruence groups. Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, pp. 151–157, Amer. Math. Soc., Providence (1989)

  38. Meyerhoff, G.R.: The Chern–simons invariant for hyperbolic 3-manifolds. Ph.D. Thesis. Princeton University (1981)

  39. Milnor, J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970)

  40. Neumann, W.D.: Extended Bloch group and the Cheeger–Chern–Simons class. Geom. Topol. 8, 413–474 (2004)

    Article  MathSciNet  Google Scholar 

  41. Parry, W., Sah, C.H.: Third homology of SL(2, R) made discrete. J. Pure Appl. Algebra 30, 181–209 (1983)

    Article  MathSciNet  Google Scholar 

  42. Quillen, D.: Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories. In: Lecture Notes in Math., vol. 341, pp. 85–147, Springer, Berlin (1973)

  43. Rogers, L.J.: On function sum theorem connected with the series \(\sum _{1}^{\infty }\frac{x^n}{n^2}\). Proc. Lond. Math. Soc. 4, 169–189 (1907)

    Article  Google Scholar 

  44. Sah, C.H.: Homology of classical Lie groups made discrete. III. J. Pure Appl. Algebra 56(3), 269–312 (1989)

    Article  MathSciNet  Google Scholar 

  45. Srinivas, V.: Algebraic K-theory. In: Progress in Mathematics, vol. 90. Birkhäuser, Boston (1991)

  46. Suslin, A.A.: \(K_3\) of a field and the Bloch group. Proc. Steklov Inst. Math. 4, 217–238 (1991)

    Google Scholar 

  47. Schwartz, R.E.: Spherical CR geometry and Dehn surgery. Ann. Math. Stud. 165, 279–300 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables. J. Math. Soc. Jpn. 14, 397–429 (1962)

    Article  MathSciNet  Google Scholar 

  49. Thurston, W.: The geometry and topology of 3-manifolds. Lecture Notes (1979)

  50. Tits, J.: Sur certaines classes d’espaces homogénes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mém. Coll. 8(3), 29 (1955)

  51. Wang, H.-C.: Closed manifolds with homogeneous complex structure. Am. J. Math. 76, 1–32 (1954)

    Article  MathSciNet  Google Scholar 

  52. Weibel, C.: The K-Book. An Introduction to Algebraic K-Theory. Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence (2013)

  53. Wolf, J.A.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic ARC components. Bull. Am. Math. Soc. 75, 1121–1237 (1969)

    Article  MathSciNet  Google Scholar 

  54. Zagier, D.: The Dilogarithm Function. Frontiers in Number Theory, Physics, and Geometry II, pp. 3–65. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

Q. Wang was supported by NSFC Grant #11371092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisha Falbel.

Additional information

Communicated by Claudio Gorodski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix”, we will discuss the relations between Bloch group and algebraic K-theory. We will use the notations introduced in Sect. 5.

1.1 Basic definitions and properties

Let F be a field. We first recall the definition of Milnor K-groups of F which was introduced in [39]. Let \(F^{*}=F{\setminus } \{0\}\) be the multiplicative group of F. Let \(T(F^{*})\) be its graded tensor algebra over \({\mathbb {Z}}\). That is,

$$\begin{aligned} T(F^{*})=\bigoplus _{n\ge 0}(F^{*})^{\otimes n}, \end{aligned}$$

where \((F^{*})^{\otimes 0}={\mathbb {Z}}\), \((F^{*})^{\otimes 1}=F^{*}\), for \(n\ge 2\), \((F^{*})^{\otimes n}=F^{*}\otimes _{_{\mathbb {Z}}}\cdots \otimes _{_{\mathbb {Z}}} F^{*}\) (n factors).

Let I be the homogeneous ideal of \(T(F^{*})\) generated by the elements of the form \(a\otimes (1-a)\), \(a\in F{\setminus } \{0,1\}\).

Definition 8.1

The Milnor K ring of F is the graded ring \(K^{M}_{*}=T(F^{*})/I\). Its degree n part is called the n-th Milnor K-group of F, denoted by \(K_n^{M}(F)\).

By definition, since the generators of I are of degree 2, we have

$$\begin{aligned} K_0^{M}(F)={\mathbb {Z}}, K_1^{M}(F)=F^{*}. \end{aligned}$$

For \(n\ge 2\), as abelian group,

$$\begin{aligned} K_n^{M}(F)=(F^{*})^{\otimes n}/I_n, \end{aligned}$$

where \(I_n\) is the subgroup generated by the tensors of the form \(a_1\otimes \cdots \otimes a_n\) with \(a_i+a_{i+1}=0\) for some i, \(1\le i\le n-1\).

The definition of Quillen’s algebraic K-groups \(K_{*}(F)\) of F is more involved (See [42]). They are defined as the homotopy groups of a certain topological space which is closely related to the classifying space of the infinite general linear group GL(F) of F. Here GL(F) is the direct limit of GL(nF), \(n\ge 1\) with respect to the homomorphisms \(d_n:GL(n,F)\rightarrow GL(n+1,F)\), defined by

$$\begin{aligned}d_n(A)= \left( \begin{array}{cc} A &{} \quad 0 \\ 0 &{} \quad 1 \\ \end{array} \right) . \end{aligned}$$

It is well-known that \(K_{1}(F)\cong K^{M}_1(F) =F^{*}\) and \(K^{M}_2(F)\cong K_{2}(F)\). Moreover, there is a natural homomorphism from \(K^{M}_{n}(F)\) to \(K_{n}(F)\) for each n. The cokernel of this map is called the group of indecomposable elements, denoted by \(K_{n}^{{\text {ind}}}(F)\). The first non-trivial case is when \(n=3\).

For more information and details about the algebraic K-theory, besides the original papers [39, 42], we recommend the books [45, 52] and the references therein. In this paper, we will focus on \(K_3\).

Now for \(n=3\) and F an infinite field, we have the following fundamental exact sequence, due to Suslin [46, Theorem 5.2]:

(8.1)

where \(\mu (F)\) is the group of roots of unity in F. \({\text {Tor}}(\mu (F),\mu (F))^{\sim }\) is the unique nontrivial extension of \({\text {Tor}}(\mu (F),\mu (F))\) by \({\mathbb {Z}}/2\).

When \(F=\mathbb {C}\), \({\text {Tor}}(\mu (\mathbb {C}),\mu (\mathbb {C}))^{\sim }={\mathbb {Q}}/{\mathbb {Z}}\), we have the exact sequence:

(8.2)

When \(F={\mathbb {R}}\), \({\text {Tor}}(\mu ({\mathbb {R}}),\mu ({\mathbb {R}}))^{\sim }={\mathbb {Z}}/4{\mathbb {Z}}\), we have the exact sequence

(8.3)

We also know that (See [44])

$$\begin{aligned} K_{3}^{{\text {ind}}}(\mathbb {C})\simeq H_3(SL(2,\mathbb {C}),{\mathbb {Z}}),\; K_{3}^{{\text {ind}}}({\mathbb {R}})\simeq H_3(SL(2,{\mathbb {R}}),{\mathbb {Z}}), \end{aligned}$$

where the group homologies are the homologies of \(SL(2,\mathbb {C})\), and \(SL(2,{\mathbb {R}})\) viewed as discrete groups.

Complex conjugation induces an involution on \(H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\), which will be denoted by c. Set

$$\begin{aligned} H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{+}=\{u\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})|c(u)=u\}; \end{aligned}$$

and

$$\begin{aligned} H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{-}=\{u\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})|c(u)=-u\}. \end{aligned}$$

By [19, 44], the natural homomorphism \(g:H_3(SL(2,{\mathbb {R}}),{\mathbb {Z}})\rightarrow H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\) is injective and its image is equal to \(H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{+}\).

Let \(f:{\mathcal {B}}({\mathbb {R}})\rightarrow {\mathcal {B}}(\mathbb {C})\) be the natural homomorphism induced by the inclusion of \({\mathbb {R}}\) into \(\mathbb {C}\). The following proposition is probably known to the experts, but we can’t find a proof in the literature. We include a proof here.

Proposition 8.2

The image of f is \({\mathcal {B}}(\mathbb {C})^{+}\) and the kernel of f is the torsion subgroup of \({\mathcal {B}}({\mathbb {R}})\). Hence \({\mathcal {B}}({\mathbb {R}})/\{{\text {torsion}}\}\cong {\mathcal {B}}(\mathbb {C})^{+}\), equivalently, \({\mathcal {B}}({\mathbb {R}})\otimes {\mathbb {Q}}\cong {\mathcal {B}}(\mathbb {C})^{+}\).

Proof

By [18, 44, 46], we have the following commutative diagram:

Both kernels of \(t_{\mathbb {C}}\) and \(t_{{\mathbb {R}}}\) consist of torsion elements. g is the natural homomorphism induced by the inclusion of \(SL(2,{\mathbb {R}})\) into \(SL(2,\mathbb {C})\). The complex conjugation acts both on \(H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\) and \({\mathcal {B}}(\mathbb {C})\). Let \(H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{+}\) and \({\mathcal {B}}(\mathbb {C})^{+}\) be the corresponding subgroups which are invariant under the action. For \(a\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\) or \(a\in {\mathcal {B}}(\mathbb {C})\), we will denote by \({\overline{a}}\) its image under the complex conjugation. It is known that \(t_{\mathbb {C}}\) is compatible with the complex conjugation, i.e. for \(a\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\), we have

$$\begin{aligned} t_{\mathbb {C}}({\overline{a}})=\overline{t_{\mathbb {C}}(a)}. \end{aligned}$$

Let’s first show that the image of f is \({\mathcal {B}}(\mathbb {C})^{+}\). By the definition, the image of f is contained in \({\mathcal {B}}(\mathbb {C})^{+}\). Suppose \(a\in {\mathcal {B}}(\mathbb {C})^{+}\),i.e. \(a={\overline{a}}\). Since \({\mathcal {B}}(\mathbb {C})\) is a \({\mathbb {Q}}\)-vector space, there is a unique \(b\in {\mathcal {B}}(\mathbb {C})\) such that \(b=\frac{1}{2}a\), i.e. \(2b=a\). Since \(a\in {\mathcal {B}}(\mathbb {C})^{+}\), so is b. Since \(t_{\mathbb {C}}\) is surjective, there is a \(c\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})\) such that \(t_{\mathbb {C}}(c)=b\). Let \(x=c+{\overline{c}}\), then \(x\in H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{+}\) and

$$\begin{aligned} t_{\mathbb {C}}(x)=t_{\mathbb {C}}(c)+t_{\mathbb {C}}({\overline{c}})=b+{\overline{b}}=2b=a. \end{aligned}$$

Since g maps \(H_3(SL(2,{\mathbb {R}}),{\mathbb {Z}})\) onto \(H_3(SL(2,\mathbb {C}),{\mathbb {Z}})^{+}\), \(\exists y\in H_3(SL(2,{\mathbb {R}}),{\mathbb {Z}})\) such that \(g(y)=x\). By the diagram chasing, we see that \(f(t_{{\mathbb {R}}}(y))=a\). Therefore the image of f is \({\mathcal {B}}(\mathbb {C})^{+}\).

If a is a torsion of \({\mathcal {B}}({\mathbb {R}})\), since \({\mathcal {B}}(\mathbb {C})\) is torsion-free, we see \(f(a)=0\). Conversely suppose \(a\in \ker {f}\). Since \(t_{{\mathbb {R}}}\) is surjective, \(\exists b\in H_3(SL(2,{\mathbb {R}}),{\mathbb {Z}})\) such that \(a=t_{{\mathbb {R}}}(b)\). By the commutative diagram, we obtain \(t_{\mathbb {C}}(g(b))=0\). Since \(\ker {t_{\mathbb {C}}}\) is torsion, g(b) is a torsion. Since g is injective, b is a torsion. Hence \(a=t_{{\mathbb {R}}}(b)\) is a torsion. □

1.2 \(H_3({{\,\mathrm{SL}\,}}(n,\mathbb {C}),{\mathbb {Z}})\) and \(K_3(\mathbb {C})\)

Let F be a field. The natural imbedding \(a_n:{{\,\mathrm{SL}\,}}(n,F)\rightarrow {{\,\mathrm{SL}\,}}(n+1,F)\) defined by

$$\begin{aligned} a_n(A)= \left( \begin{array}{cc} A &{} \quad 0 \\ 0 &{} \quad 1 \\ \end{array} \right) \end{aligned}$$

induces the natural homomorphism

$$\begin{aligned} a(i,n):H_i({{\,\mathrm{SL}\,}}(n,F),{\mathbb {Z}})\rightarrow H_i({{\,\mathrm{SL}\,}}(n+1,F),{\mathbb {Z}}) \end{aligned}$$

for each i and n.

The following proposition was proved by Sah.

Proposition 8.3

(Sah [44]) Let \(F=\mathbb {C}\) or \({\mathbb {R}}\).

  1. 1.

    \(a(3,n):H_3({{\,\mathrm{SL}\,}}(n,F),{\mathbb {Z}})\rightarrow H_3({{\,\mathrm{SL}\,}}(n+1,F),{\mathbb {Z}})\) are isomorphisms for \(n\ge 3\) ;

  2. 2.

    \(a(3,2):H_3({{\,\mathrm{SL}\,}}(2,F),{\mathbb {Z}})\rightarrow H_3({{\,\mathrm{SL}\,}}(3,F),{\mathbb {Z}})\) is injective.

Moreover, for \(F=\mathbb {C}\), we have for each \(n\ge 3\),

$$\begin{aligned} K_3(\mathbb {C})\simeq H_3({{\,\mathrm{SL}\,}}(n,\mathbb {C}),{\mathbb {Z}}), \end{aligned}$$

and

$$\begin{aligned} K_3(\mathbb {C})\simeq H_3({{\,\mathrm{SL}\,}}(2,\mathbb {C}),{\mathbb {Z}})\bigoplus K_3^{M}(\mathbb {C})\simeq K_3^{ind}(\mathbb {C}) \bigoplus K_3^{M}(\mathbb {C}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falbel, E., Guilloux, A. & Wang, Q. Geometric structures and configurations of flags in orbits of real forms. São Paulo J. Math. Sci. 15, 175–213 (2021). https://doi.org/10.1007/s40863-020-00175-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-020-00175-3

Keywords

Navigation