Skip to main content

Advertisement

Log in

CO2 emissions from renewables: solar pv, hydrothermal and EGS sources

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Geothermal and solar pv are future energy sources, as both these renewables draw energy from natural heat sources i.e. the Earth and the Sun. While geothermal energy utilizes Earth’s heat for power generation and for direct applications, like space cooling and dehydration, solar energy captures the Sun’s energy and converts the energy to electricity through solar pv cells. The quartz required to manufacture solar cells that can generate 1 MWe weighs about 10 tons, and the manufacture of pv cells involves two important stages: metallurgical grade silicon (MGS) and electronic grade silicon (EGS). In the first stage an amount of 1756 × 106 kg of CO2 is released, and a similar amount of CO2 is released during the conversion of EGS to ingots. The total CO2 emissions during the lifecycle of a solar pv cell are about 3312 × 106 kg. This is far higher than a geothermal energy source, which emits about 450 g/kWh. According to the International Energy Agency (IEA), under the sustainable development policy proposed for adoption to mitigate CO2 emissions, nearly 54 × 109 cells are required to meet the generation target of 14,139 TWh. Of solar pv and geothermal energy sources, geothermal energy is the best option under this policy scenario to mitigate CO2 emissions and to control global temperatures. In addition to the emissions related to the manufacture of solar pv cells, solar panels and solar cell waste management are of great concern. Globally the generation of solar panel waste will be of the order of 78 million tons (Weckend et al. 2016). Countries involved in the manufacture of solar pv cells will emit considerable amounts of CO2 from this source in addition to coal-based thermal power plants. Solar pv cells may not emit CO2 during the generation of electricity, but during their life time emissions are considerable. Therefore, solar pv cannot be considered a zero-emission source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Gotze and Mockel (2012)

Fig. 2
Fig. 3

Modified after Fraas (2014), Klein et al. (2017), Kabir et al. (2018)

Fig. 4

Adapted from WEO (2018)

Fig. 5
Fig. 6

Based on Ármannsson et al. (2005) and present study

Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abderrazak H, Hadj Hmida ESB (2011) Silicon carbide: synthesis and properties. In: Gerhardt R (ed) Properties and applications of silicon carbide. In Tech, Croatia

    Google Scholar 

  • Alsema EA (1998) Energy requirements and CO2 mitigation potential of PV system. Paper presented at the Workshop “PV and the Environment 1998” National Renewable Energy Laboratory, Keystone, Colorado

  • Andriamasinoro F, Angel J-M (2007) Modeling the ultra-pure quartz exploitation in northeastern Madagascar: impact of the activity on the socio-economical situation of the population. J Socio-Econ 36(2):311–329

    Article  Google Scholar 

  • ARENA (2014) Highlights of the barriers, risks and rewards of the Australian geothermal sector: 2020–2030. Australian Renewable Agency report 978-0-9925510-4-9, 16 p

  • Ármannsson H (2003) CO2 emissions from geothermal plants. In: Procedings, International Geothermal Conference, Reykjavik, Iceland, paper S12, 103, 52–62

  • Ármannsson H, Fridriksson T, Kristjánsson BR (2005) CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 34(3):286–296. https://doi.org/10.1016/j.geothermics.2004.11.005

    Article  Google Scholar 

  • Arvanitidis N, Kaklamanis N, Platias S (1999) Conversion of quartz-mine waste materials to exploitable resources and industrial products. Mine Water Environ IMWA 2:703–709

    Google Scholar 

  • Avanthi I, Ranjith PG, Tharaka R, Samintha P, Chandrasekharam D (2018) An influence of thermally-induced micro-cracking under cooling treatments: mechanical characteristics of Australian granite. Energies. https://doi.org/10.3390/en11061338

    Article  Google Scholar 

  • Axtmann RC (1975) Emission control of gas effluents from geothermal power plants. Environ Lett 8:135–146

    Article  Google Scholar 

  • Becquerel AE (1839) Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. C R L’Acad Sci 9:145–149

    Google Scholar 

  • Becquerel AE (1841) Memoire sur les effects d´electriques produits sous l´influence des rayons solaires. Ann Phys Chem 54:35–42

    Article  Google Scholar 

  • Bertani R (2015) Geothermal power generation in the world 2010–2014 update report. Paper presented at the proceedings world geothermal congress Melbourne, Australia

  • Bertani R, Thain I (2002) Geothermal power generating plant CO2 emission survey. IGA News 49:1–3

    Google Scholar 

  • Bhargava ON, Bassi UK (1998) Geology of Spiti-Kinnaur Himachal Himalaya. Geol Soc India Mem 124:1–210

    Google Scholar 

  • Brown DW (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the twenty-fifth workshop on geothermal reservoir engineering, Stanford University

  • Brown DW (2003) Geothermal energy production with supercritical fluids. Google Patents

  • Brown D (2014) 1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mwxico. Los Alamos Nationale Laboratory, U S A report 95-2486, 7 p

  • Budd A (2013) What happened to geothermal? Geoscience Australia, AUSGEO, 110, 7 p

  • Chandrasekharam D, Bundschuh J (2008) Low-enthalpy geothermal resources for power generation, vol 172. CRC Press, Leiden

    Book  Google Scholar 

  • Chandrasekharam D, Bankher K, Ranjith PG (2019) High heat generating granites of Saudi Arabian shield: prospect for CO2 emissions reduction and climate mitigation. In: Xie H, Zhao J, Ranjith P (eds) Deep rock mechanics: from research to engineering. Taylor & Francis Group, London

    Google Scholar 

  • Cuenot N, Faucher J-P, Fritsch D, Genter A, Szablinski D (2008) The European EGS project at Soultz-sous-Forêts: from extensive exploration to power production. Paper presented at the 2008 IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st century

  • Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z Phys Chem 92U(1):219–221. https://doi.org/10.1515/zpch-1918-9212

    Article  Google Scholar 

  • Delgado H, Piedad-Sanchez N, Galvan L, Julio P, Alvarez JM, Cardenas L (1998) CO2 flux measurements at Popocate pet lvolcano: II Magnitude of emissions and significance. American Geophy. Union, Fall meeting December 6–10, San Francisco, USA, F926, 4 p

  • Delgado BM, Kotireddy R, Cao S, Hasan A, Hoes PJ, Hensen JLM, Siren K (2018) Lifecycle cost and CO2 emissions of residential heat and electricity prosumers in Finland and the Netherlands. Energy Convers Manag 160:495–508

    Article  Google Scholar 

  • Di Pippo R (1993) Geothermal energy: electricity generation and environmental impact. In: Jackson T (ed) Renewable energy—prospects for implementation. Butterworth-Heinemann, London

    Google Scholar 

  • Di Pippo R (2012) Geothemal power plants, Chapter 22. In: Enhanced geothermal systems. Butterworth Heinemann Pub, USA, pp 443–481

  • DOE (2019) Geo vision: harnessing the heat beneath our feet. US Department of Energy Report, 218 p

  • Dones R, Frischknecht R (1998) Life cycle assessment of photovoltaic systems: results of Swiss studies on energy chains. Prog Photovolt Res Appl 6:117–125

    Article  Google Scholar 

  • Draganits E (2004) Lower Devonian Muth Formation (Higher Himalaya, NW India). Exciting structures in monotonous quartzites. Ber Inst Erdwiss K-F-Univ. Graz. PANGEO, Austria, 9, pp 46–49

  • Duffy R (2007) Gemstone mining in Madagascar: transnational networks, criminalisation and global integration. J Mod Afr Stud 45(2):185–206

    Article  Google Scholar 

  • EUCR (2003) External costs: research results on socio-environmental damages due to electricity and transport. European Commission Community Research, EUR 20198, 28

  • Fraas LM (2014) Low-cost solar electric power. Springer, Berlin

    Book  Google Scholar 

  • Fritts CE (1883) On a new form of selenium photocell. In: Proceedings of the American Association for the Advancement of Science, vol 33

  • Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status. Prog Photovolt 14(3):275–280. https://doi.org/10.1002/pip.706

    Article  Google Scholar 

  • Fthenakis VM, Moskowitz PD (2000) Photovoltaics: environmental, health and safety issues and perspectives. Prog Photovolt Res Appl 8(1):27–38. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1%3c27:AID-PIP296%3e3.0.CO;2-8

    Article  Google Scholar 

  • Fthenakis VM, Kim HC, Alsema E (2008) Emissions from photovoltaic life cycles. Environ Sci Technol 42(6):2168–2174. https://doi.org/10.1021/es071763q

    Article  Google Scholar 

  • Fthenakis V, Kim HC, Frischknecht R, Raugei M, Sinha P, Stucki M (2011) Life cycle Inventories and life cycle assessment of photovoltaic systems. International Energy Agency (IEA) PVPS task 12, T12-02: 2011, 63 p

  • Genter A, Fritsch D, Cuenot N, Baumgartner J, Graff J (2009) Overview of the current activities of the European EGS Soultz project: from exploration to electricity production. In: Proceedings, thirty-fourth workshop on geothermal reservoir engineering

  • Genter A, Evans K, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). CR Geosci 342(7–8):502–516

    Article  Google Scholar 

  • Gıslasson SR (2000) Carbondioxide from Eyjafjallakkull and chemical composition of spring water and river water in the EyjafjalljkullMrdalsj region. Science Institute, University of Iceland, Report 56, 15 p

  • Goetz AF, Srivastava V (1985) Mineralogical mapping in the Cuprite mining district, Nevada. In: Vane G, Goetz AF (eds) Proceedings, Airborne imaging spectrometer data analysis workshop, 1985, Jet Propulson Laboratory, California, USA, 22–32 p

  • Gotze J, Mockel R (2012) Quartz: deposits, mineralogy and analytics. Springer, Berlin

    Book  Google Scholar 

  • Genter A, Goerke X., Graff, J.-J., Cuenot, N., Krall, G., Schindler, M., & Ravier, G. (2010). Current status of the EGS Soultz geothermal project (France). Paper presented at the world geothermal congress, WGC2010, Bali, Indonesia

  • Gray JE, Theodorakos PM, Bailey EA, Turner RR (2000) Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci Total Environ 260(1–3):21–33

    Article  Google Scholar 

  • Grbes A (2016) A life cycle assessment of silica sand: comparing the beneficiation process. Sustainability 8:11–20. https://doi.org/10.3390/su8010011

    Article  Google Scholar 

  • Häring M (2007) Geothermische Stromproduktion aus Enhanced Geothermal Systems (EGS). Stand der Technik

  • Häring M, Hopkirk R (2002) The Swiss deep heat mining project-the Basel exploration drilling. GHC Bull 23(1):31–33

    Google Scholar 

  • Haus R, Prinz S, Priess C (2012) Assessment of high purity quartz resources. In: Gotze J, Mockel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin

    Google Scholar 

  • Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japan case. Energy 30:2042–2056

    Article  Google Scholar 

  • IMY (2016) Quartz and other silica minerals. Indian Minerals Year book. Indian Bureau of Mines, Govt. India

  • IRENA (2016) End-of-life management: solar photovoltaic panels. IRENA-IEA PVPS 2016 report. Retrieved from

  • Isaka BA, Ranjith P, Rathnaweera T (2019a) The use of super-critical carbon dioxide as the working fluid in enhanced geothermal systems (EGSs): a review study. Sustain Energy Technol Assess 36:100547

    Google Scholar 

  • Isaka BA, Ranjith P, Rathnaweera T, Perera M, Kumari W (2019b) Influence of long-term operation of supercritical carbon dioxide-based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass. Renew Energy 136:428–441

    Article  Google Scholar 

  • Jerez S, Tobin I, Vautard R, Montávez JP, López-Romero JM, Thais F et al (2015) The impact of climate change on photovoltaic power generation in Europe. Nat Commun 6:10014. https://doi.org/10.1038/ncomms10014

    Article  Google Scholar 

  • Johnston WD, Butler RB (1945) Quartz crystal in Brazil. Bull Geol Soc Am 57:601–655

    Article  Google Scholar 

  • Jones G, Bouamane L (2012) Power from sunshine: a business history of solar energy. Harvard Business School Working Paper Series, 88

  • Jungbluth N, Bauer C, Dones R, Frischknecht R (2005) Life cycle assessment for emerging technologies: case studies for photovoltaic and wind power. Int J LCA 10(1):24–34. https://doi.org/10.1065/lca2004.11.181.3

    Article  Google Scholar 

  • Kabir E, Kumar P, Kumar S, Adelodun AA, Kim K-H (2018) Solar energy: potential and future prospects. Renew Sustain Energy Rev 82(1):894–900. https://doi.org/10.1016/j.rser.2017.09.094

    Article  Google Scholar 

  • Kaieda H, Sakunaga S, Motojima I, Kondo H, Kiho K, Suzuki K et al (1992) Ogachi project for HDR geothermal power in Japan: first hydraulic fracturing results. Trans Geotherm Resour Counc

  • Kaieda H, Ito H, Suenaga H, Kusunoki K, Suzuki K, Kiho K, Li H (2002) Review of the Ogachi HDR project: search for water flow paths in HDR reservoir. Geotherm Res Council Trans 20:225–228

  • Kaieda H, Ueda A, Kubota K, Wakahama H, Mito S, Sugiyama K et al (2009) Field experiments for studying on CO2 sequestration in solid minerals at the Ogachi HDR geothermal site, Japan. In: Proceedings 34th workshop on geothermal reservoir engineering

  • Kerrick DM (2001) Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev Geophys 39(4):565–585

    Article  Google Scholar 

  • Klein M, Łapiński K, Siuzdak K, Cenian A (2017) Fundamentals of solar energy. In: Bundschuh J, Chen G, Chandrasekharam D, Piechocki J (eds) Geothermal, wind and solar energy applications in agriculture and aquaculture. CRC Press, Boca Raton

    Google Scholar 

  • Kumari W, Ranjith P (2019) Sustainable development of enhanced geothermal systems based on geotechnical research—a review. Earth Sci Rev 199:102955

    Article  Google Scholar 

  • Kumari S, Kumar R, Mishra KK, Pandey JK, Udayabhanu GN, Bandopadhyay AK (2011) Determination of quartz and its abundance in respirable airborne dust in both coal and metal mines in India. Procedia Eng 26:1810–1819

    Article  Google Scholar 

  • Lin M, Pei Z, Lei S (2017) Mineralogy and processing of hydrothermal vein quartz from Hengche, Hubei Province (China). Minerals 7(9):161–177. https://doi.org/10.3390/min7090161

    Article  Google Scholar 

  • Louwen A, van Sark WG, Faaij AP, Schropp RE (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 7:13728. https://doi.org/10.1038/ncomms13728

    Article  Google Scholar 

  • Ludina NA, Mustafaa NI, Hanafiahb MM, Ibrahima MA, Teridia MAM, Sepeaia S et al (2018) Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: a review. Renew Sustain Energy Rev 96:11–28

    Article  Google Scholar 

  • Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145(3–4):233–248

    Article  Google Scholar 

  • Mathur A, Viswamohan K, Mohanty K, Murthy V, Seshadrinath S (2000) Uranium extraction using biogenic ferric sulfate a case study on quartz chlorite ore from Jaduguda, Singhbhum Thrust Belt (STB), Bihar, India. Miner Eng 13(5):575–579

    Article  Google Scholar 

  • Meier PJ, Kulcinski GL (2002) Life-cycle energy requirements and greenhouse gas emissions for building-integrated photovoltaics. Retrieved from Madison, USA

  • Mills T, Humphreys B (2013) Habanero pilot project—Australia’s first EGS power plant. In: Proceedings

  • Minissale A, Donato A, Procesi M, Pizzino L, Giammanco S (2019) Systematic review of geochemical data from thermal springs, gas vents and fumaroles of Southern Italy for geothermal favourability mapping. Earth Sci Rev 188:514–535

    Article  Google Scholar 

  • MIT (2006) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Mass Inst Technol 209:358

    Google Scholar 

  • Montanari D, Minissale A, Doveri M, Gola G, Trumpy E, Santilano A, Manzella A (2017) Geothermal resources within carbonate reservoirs in western Sicily (Italy): a review. Earth Sci Rev 169:180–201

    Article  Google Scholar 

  • Mörner N-A, Etiope G (2002) Carbon degassing from the lithosphere. Global Planet Change 33(1–2):185–203

    Article  Google Scholar 

  • Muller A, Wanvik JE, Ihlen PM (2012) Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In: Gotze J, Mockel R (eds) Quartz: deposits, mineralogy and analytics. Springer, Berlin

    Google Scholar 

  • Nagaraju A, Suresh S, Killham K, Hudson-Edwards K (2006) Hydrogeochemistry of waters of mangampeta barite mining area, Cuddapah Basin, Andhra Pradesh, India. Turk J Eng Environ Sci 30(4):203–219

    Google Scholar 

  • Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev 19:255–274. https://doi.org/10.1016/j.rser.2012.11.035

    Article  Google Scholar 

  • Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4):351–367. https://doi.org/10.1016/j.geothermics.2006.08.002

    Article  Google Scholar 

  • Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 49(6):1446–1454

    Article  Google Scholar 

  • Pruess K, Azaroual M (2006) On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system. In: Proceedings, thirty-first workshop on geothermal reservoir engineering

  • Rathnaweera TD, Ranjith PG, Perera MSA, Haque A, Lashin A, Al Arifi N et al (2015) CO2 induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: an experimental study. Mater Sci Eng A 641:123–137

    Article  Google Scholar 

  • Reich NH, Alsema EA, van Sark WGJHM, Nieuwlaar E (2007) CO2 emissions in the perspective of PV a renewable energy economy. Paper presented at the 22nd European photovoltaic solar energy conference, Milan, Italy

  • REN21 (2016) Renewable energy policy network for the 21st century. Renewables 2016 Global Status Report. Retrieved September 7, 2018 from http://www.ren21.net/status-of-renewables/global-statusreport/

  • Sarrasin B (2006) The mining industry and the regulatory framework in Madagascar: some developmental and environmental issues. J Clean Prod 14(3–4):388–396

    Article  Google Scholar 

  • Schei A, Tuset JK, Tveit H (1998) Production of high silicon alloys. Tapir, Trondheim

  • Şen Z (2004) Solar energy in progress and future research trends. Prog Energy Combust Sci 30(4):367–416. https://doi.org/10.1016/j.pecs.2004.02.004

    Article  Google Scholar 

  • Shahsavari A, Akbari M (2018) Potential of solar energy in developing countries for reducing energy-related emissions. Renew Sustain Energy Rev 90:275–291. https://doi.org/10.1016/j.rser.2018.03.065

    Article  Google Scholar 

  • Sigmarsson O, Karlsson HR, Larsen G (2000) The 1996 and 1998 subglacial eruptions beneath the Vatnaj¨okull ice sheet in Iceland: contrasting geochemical and geophysical inferences on magma migration. Bull Volc 61:468–476

    Article  Google Scholar 

  • Stoiber RE, Tolman C (1945) Geology of quartz crystal deposits. Am Miner 30:219–229

    Google Scholar 

  • Sturkell E, Sigmundsson F, Einarsson P (2003) Recent unrest and magma movements at Eyjafjallajökull and Katla volcanoes, Iceland. J Geophys Res 108(B8):1–13

    Article  Google Scholar 

  • Tassinari CCG, Pinzon FD, Ventura JB (2008) Age and sources of gold mineralization in the Marmato mining district, NW Colombia: a Miocene-Pliocene epizonal gold deposit. Ore Geol Rev 33(3–4):505–518

    Article  Google Scholar 

  • Tester JW, Brown DW, Potter RM (1989) Hot dry rock geothermal energy- A new energy agenda for the 21st Century. Los Alamos Laboratory, USA Report LA-11514-MS UC 251, 36 p

  • Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM et al (2007) Impact of enhanced geothermal systems on US energy supply in the twenty-first century. Philos Trans R Soc A Math Phys Eng Sci 365(1853):1057–1094

    Article  Google Scholar 

  • Tomac I, Sauter M (2018) A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev 82:3972–3980

    Article  Google Scholar 

  • Tsujimori T, Liou JG, Coleman RG, Rohtert W, Cleary JG (2003) Eclogitization of a cold subducting slab: prograde evolution of lawsonite-eclogites from the Motagua Fault Zone, Guatemala. Paper presented at the 2003 Seattle annual meeting

  • Tsujimori T, Liou JG, Coleman RG (2005) Coexisting retrograde jadeite and omphacite in a jadeite-bearing lawsonite eclogite from the Motagua Fault Zone, Guatemala. Am Mineral 90(5–6):836–842

    Article  Google Scholar 

  • Ueda A, Kato K, Ohsumi T, Yajima T, Ito H, Kaieda H et al (2005) Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions. Geochem J 39(5):417–425

    Article  Google Scholar 

  • USDE (2019) The history of solar energy efficiency and renewable energy. Retrieved September 7, 2018 from https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf

  • USGS (1950) Minerals Resources of Colombia, US Geological Survey Bulletin 964-B, 161 p

  • USGS (1957) Mineral Resources of Central America, US Geological Survey Bulletin 1034, 220 p

  • Usha CVH, Schuler DA (2011) Government policy and firm strategy in the solar photovoltaic industry. Calif Manag Rev 54:17–38

    Article  Google Scholar 

  • Vatalis KI, Charalambides G, Benetis NP (2015) Market of high purity quartz innovative applications. Procedia Econ Finance 24:734–742. https://doi.org/10.1016/S2212-5671(15)00688-7

    Article  Google Scholar 

  • Vishu D, Kroupa M, Bittar R (2005) Silicon and silicon alloys, chemical and metallurgical. In: Othmer K (ed) Encyclopedia of chemical technology, vol 21. Wiley, New York, pp 1104–1122

    Google Scholar 

  • Wang J, O’Donnell J, Brandt AR (2017) Potential solar energy use in the global petroleum sector. Energy 118:884–892

    Article  Google Scholar 

  • Wanniarachchige GPK (2018) Stimulation of heat extraction from hot dry rocks-geothermal energy. Ph.D. thesis, Monash University

  • Weckend S, Wade A, Heath G (2016) End-of-life management: solar photovoltaic panels. International Renwable Energy Agency (IRENA): Phtovoltaic Power Syetems Programme. IEA-PVPS Report Number T12-06:2015, 100 p

  • WEO (2018) World energy outlook: international energy agency

  • West RC (1952) Folk mining in Colombia. Econ Geogr 28(4):323–330

    Article  Google Scholar 

  • Wu P, Ma X, Ji J, Ma Y (2016) Review on life cycle assessment of greenhouse gas emission profit of solar photovoltaic systems. Energy Procedia 105:1289–1294

    Article  Google Scholar 

  • Xu R, Zhang L, Zhang F, Jiang P (2015) A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid. Int J Energy Res 39(13):1722–1741

    Article  Google Scholar 

  • Zhang F-Z, Jiang P-X, Xu R-N (2013) System thermodynamic performance comparison of CO-EGS and water-EGS systems. Appl Therm Eng 61(2):236–244

    Article  Google Scholar 

  • Zhou J, Yang X (2018) A reflection on China’s high purity quartz industry and its strategic development. Mater Sci Eng Int J 2(6):300–302. https://doi.org/10.15406/mseij.2018.02.00074

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, IIT Hyderabad for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chandrasekharam.

Ethics declarations

Conflict of interest

On behalf of the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekharam, D., Ranjith Pathegama, G. CO2 emissions from renewables: solar pv, hydrothermal and EGS sources. Geomech. Geophys. Geo-energ. Geo-resour. 6, 13 (2020). https://doi.org/10.1007/s40948-019-00135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-019-00135-y

Keywords

Navigation