Skip to main content
Log in

Suppressing Ambipolar Current in UTFET by Auxiliary Gate

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new U-shaped channel tunneling-based field-effect transistor (UTFET) with auxiliary gate above drain is proposed. The ambipolar current in the proposed is investigated, in which simulation results show that ambipolar current takes place, due to drain-to-drain tunneling similar to gate-induced drain leakage in conventional MOSFETs. By drain depletion in auxiliary gate-based UTFET, electric field is reduced in ambipolar tunneling region, which causes tunneling barrier width to increase and the energy window of tunneling (ΔΦ) to decrease. As a result, two decades of reduction in the ambipolar current is achieved and ambipolar subthreshold swing (SSamb) is degraded by 24.8% in comparison with similar structure without auxiliary gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdi DB, Kumar MJ (2014) Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc 2(6):187–190

    Article  Google Scholar 

  • Abraham N, James RK (2020) An improved tunnel field-effect transistor with an L-shaped gate and channel. J Comput Electron 19(1):304–309

    Article  Google Scholar 

  • Aghandeh H, Ziabari SAS (2017) Gate engineered heterostructure junctionless TFET with Gaussian doping profile for ambipolar suppression and electrical performance improvement. Superlatt Microstruct 111(1):103–114

    Article  Google Scholar 

  • ATLAS Device Simulation Software (2016) Silvaco Int. Santa Clara, CA

    Google Scholar 

  • Avci UE, Morris DH, Young IA (2015) Tunnel field-effect transistors: prospects and challenges. IEEE J Electron Devices Soc 3(3):88–95

    Article  Google Scholar 

  • Bagga N, Chauhan N, Gupta D, Dasgupta S (2019) A novel twofold tunnel FET with reduced miller capacitance: proposal and investigation. IEEE Trans Electron Devices 66(7):3202–3208

    Article  Google Scholar 

  • Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

    Article  Google Scholar 

  • Cao W, Yao CJ, Jiao GF, Huang D, Yu HY, Li MF (2011) Improvement in reliability of tunneling field-effect transistor with pnin structure. IEEE Trans Electron Devices 58(7):2122–2126

    Article  Google Scholar 

  • Chandan BV, Nigam K, Sharma D, Tikkiwal VA (2019) A novel methodology to suppress ambipolarity and improve the electronic characteristics of polarity-based electrically doped tunnel FET. Appl Phys A 125(2):81–88

    Article  Google Scholar 

  • Chen S, Liu H, Wang S, Li W, Wang X, Zhao L (2018) Analog/RF performance of T-shape gate dual-source tunnel field-effect transistor. Nanoscale Res Lett 13(1):321–329

    Article  Google Scholar 

  • Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  • Choi YK, Ha D, King TJ, Bokor J (2003) Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs. J Appl Phys 42(4S):2073–2076

    Article  Google Scholar 

  • Debnath RG, Baruah K, Baishya S (2020) DC and analog/RF performance analysis of gate extended U-shaped channel tunnel field effect transistor. Microsyst Technol 1(1):1–7

    Google Scholar 

  • Hu VPH, Wang CT (2018) Optimization of III–V heterojunction tunnel FET with non-uniform channel thickness for performance enhancement and ambipolar leakage suppression. J Appl Phys 57(4S):04FD18-6

    Google Scholar 

  • Imenabadi RM, Saremi M, Vandenberghe WG (2017) A novel PNPN-Like Z-Shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans Electron Devices 64(11):4752–4758

    Article  Google Scholar 

  • Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337

    Article  Google Scholar 

  • Kim SW (2012) L-shaped tunneling field-effect transistors (TFETs) for low subthreshold swing and high current drivability. Jpn J Appl Phys 51(6):4–5

    Google Scholar 

  • Li W, Liu H, Wang S, Chen S, Yang Z (2017a) Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res Lett 12(1):198–206

    Article  Google Scholar 

  • Li W, Liu H, Wang S, Chen S (2017b) Reduced miller capacitance in U-Shaped channel tunneling FET by introducing heterogeneous gate dielectric. IEEE Electron Device Lett 38(3):403–406

    Article  Google Scholar 

  • Li C, Yan ZR, Zhuang YQ, Zhao XL, Guo JM (2018) Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric. Chin Phys B 27(7):0785021–0785028

    Google Scholar 

  • Li J, Xie Q, Huang A, and Wang Z (2020) Effects of drain doping profile and gate structure on ambipolar current of TFET. In: IEEE 3rd International Conference Electron. Technol. ICET, pp. 20–24

  • Lin R, Lu Q, Ranade P, King TJ, Hu C (2002) An adjustable work function technology using Mo gate for CMOS devices. IEEE Electron Device Lett 23(1):49–51

    Article  Google Scholar 

  • Lqbal MMH, Hong Y, Garg P, Udrea F, Migliorato P, Fonash SJ (2008) The nanoscale silicon accumulation-mode MOSFET a comprehensive numerical study. IEEE Trans Electron Devices 55(11):2946–2959

    Article  Google Scholar 

  • Mookerjea S, Krishnan R, Datta S, Narayanan V (2009a) On enhanced miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett 30(10):1102–1104

    Article  Google Scholar 

  • Mookerjea S, Krishnan R, Datta S, Narayanan V (2009b) Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices 56(9):2092–2098

    Article  Google Scholar 

  • Narang R, Saxena M, Gupta RS, Gupta M (2013) Device and circuit level performance comparison of tunnel FET architectures and impact of heterogeneous gate dielectric. J Semicond Technol Sci 13(3):224–236

    Article  Google Scholar 

  • Nigam K, Sharma D (2016) Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett 11(8):460–464

    Article  Google Scholar 

  • Sahay S, Kumar MJ (2015) Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans Electron Devices 62(1):3882–3886

    Article  Google Scholar 

  • Tajally MB, Karami MA (2017) Hetero-gate-Dielectric Symmetric U-shaped gate tunnel FET. Superlatt Microstruct 110(1):139–145

    Article  Google Scholar 

  • Tirkey S, Sharma D, Yadav DS, Yadav S (2017) Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans Electron Devices 64(9):3943–3950

    Article  Google Scholar 

  • Tsui BY, Huang CF (2003) Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett 24(3):153–155

    Article  Google Scholar 

  • Turchetti C, Masetti G (1985) Analysis of the depletion-mode MOSFET including diffusion and drift currents. IEEE Trans Electron Devices 32(4):773–782

    Article  Google Scholar 

  • Turkane SM, Kureshi AK (2016) Review of tunnel field effect transistor (TFET). Int J Appl Eng Res 11(7):4922–4929

    Google Scholar 

  • Villalon A, Le Carval G, Martinie S, Le Royer C, Jaud MA, Cristoloveanu S (2014) Further insights in TFET operation. IEEE Trans Electron Devices 61(8):2893–2898

    Article  Google Scholar 

  • Vladimirescu A, Amara A, Anghel C (2012) An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron 70(1):67–72

    Google Scholar 

  • Wang W, Wang P, Zhang C, Lin X, Liu X (2013) Design of U-Shape channel tunnel FETS with SiGe source regions. IEEE Trans Electron Devices 61(1):193–197

    Article  Google Scholar 

  • Wu C, Huang Q, Zhao Y, Wang J, Wang Y, Huang R (2016) A novel tunnel FET design with stacked source configuration for average subthreshold swing reduction. IEEE Trans Electron Devices 63(12):5072–5076

    Article  Google Scholar 

  • Xie H, Liu H (2020) Design and investigation of a dual source and U-shaped gate TFET with n buffer and SiGe pocket. AIP Adv 10(5):0551251–0551259

    Article  Google Scholar 

  • Yadav DS, Sharma D, Raad BR, Bajaj V (2016) Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlatt Microstruct 96(1):36–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azim Karami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyvazi, K., Karami, M.A. Suppressing Ambipolar Current in UTFET by Auxiliary Gate. Iran J Sci Technol Trans Electr Eng 45, 407–414 (2021). https://doi.org/10.1007/s40998-020-00377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-020-00377-7

Keywords

Navigation