Skip to main content

Advertisement

Log in

A new approach to control of multivariable systems through a hierarchical aggregation of fuzzy controllers

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

In this study, the main contribution is a new approach to control multivariable systems by engaging an idea of hierarchical aggregation of multiple fuzzy controllers. A two-level control architecture is developed in which in addition to local fuzzy controllers focused on control of individual subsystems, a higher level controller coordinating and adjusting control actions is designed. The performance of the approach is illustrated with the use of the benchmark problem of the three-tank water control. A statistical comparison is carried where the hierarchical control strategy is compared with the one when a collection of independent individual fuzzy controllers is involved. We demonstrate that the proposed method outperforms “conventional” fuzzy control. Genetic optimization (genetic algorithm) is used in the design of the overall control architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Andújar J, Barragan A (2005) A methodology to design stable nonlinear fuzzy control systems. J Fuzzy Sets Syst 154(2):157–181

    Article  MathSciNet  MATH  Google Scholar 

  • Attia A-F (2009) Hierarchical fuzzy controllers for an astronomical telescope tracking. Appl Soft Comput 9(1):135–141

    Article  Google Scholar 

  • Castillo O, Melin P (1998) New fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. IEEE international conference on fuzzy systems 2, pp 1182–1187

  • Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput 12(4):1267–1278

    Article  Google Scholar 

  • Castillo O, Martinez-Marroquin R, Melin P, Valdez F, Soria J (2012) Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf Sci 192:19–38

    Article  Google Scholar 

  • Cázarez N, Aguilar L, Castillo O (2010) Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash. Exp Syst Appl 37(6):4368–4378

    Article  Google Scholar 

  • Cervantes L, Castillo O (2011a) Design of a fuzzy system for the longitudinal control of an F-14 airplane. In: Soft computing for intelligent control and mobile robotics, vol 318. Springer, Berlin, Germany, pp 213–224

  • Cervantes L. Castillo O (2011b) Intelligent control of nonlinear dynamic plants using a hierarchical modular approach and type-2 fuzzy logic. Lecture notes in computer science, vol 7095. Springer, Heidelberg, Germany, pp 1–12

  • Cervantes L.,Castillo O (2011c) Hierarchical genetic algorithms for optimal type-2 fuzzy system design. Annual meeting of the North American Fuzzy Information Processing Society. IEEE Press, Piscataway, New Jersey, USA, pp 324–329

  • Cervantes L, Castillo O (2013) Comparative study of type-1 and type-2 fuzzy systems for the three-tank water control problem. LNAI 7630. Springer, Heidelberg, Germany, pp 362–373

  • Cervantes L, Castillo O (2016) Optimization of an integrator to control the flight of an airplane. In: Zadeh L, Abbasov A, Yager R, Shahbazova S, Reformat M (eds) Recent developments and new direction in soft-computing foundations and applications studies fuzziness and soft computing, vol 342. Springer, Cham, pp 407–417

    Chapter  Google Scholar 

  • Chalupa P, Novák J, Bobál V (2011) Detailed Simulink model of real time three tank system. CSCC’11 proceedings of the 2nd international conference on circuits, systems, communications and computers, pp 161–166

  • Chen S-M, Chang T-H (2001) Finding multiple possible critical paths using fuzzy PERT. IEEE Trans Syst Man Cybern Part B 31(6):930–937

    Article  Google Scholar 

  • Chen S-M, Chien C-Y (2011) Parallelized genetic ant colony systems for solving the traveling salesman problem. Exp Syst Appl 38(4):3873–3883

    Article  Google Scholar 

  • Chen S-M, Chung N-Y (2006) Forecasting enrollments of students using fuzzy time series and genetic algorithms. Int J Inf Manag Sci 17(3):1–17

    MATH  Google Scholar 

  • Chen S-M, Huang C-M (2003) Generating weighted fuzzy rules from relational database systems for estimating null values using genetic algorithms. IEEE Trans Fuzzy Syst 11(4):495–506

    Article  Google Scholar 

  • Chen S-M, Kao P-Y (2013) TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines. Inf Sci 247:62–71

    Article  MathSciNet  Google Scholar 

  • Chen G, Pham T (2001) Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. CRC Press, Boca Raton, FL

  • Dadios E (2012) Fuzzy logic-controls, concepts, theories and applications. Hard cover, Publisher InTech (ISBN 978-953-51-0396-7)

  • Deng J, Hao C (2011) The Smith-PID control of three-tank-system based on fuzzy theory. J Comput 6:3

    Article  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

  • Haupt R, Haupt S (2004) Practical genetic algorithm. Wiley, Danvers, MA, USA

  • Hidalgo D. Melin P, Castillo O (2012) An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst Appl 39(4):4590–4598

    Article  Google Scholar 

  • Lam H, Leung F (2005) Fuzzy rule-based combination of linear and switching state-feedback controllers. Fuzzy Sets Syst 156(2):153–184

    Article  MathSciNet  MATH  Google Scholar 

  • Lam H, Leung F (2008) Stability analysis of discrete-time fuzzy-model-based control systems with time delay: time delay-independent approach. Fuzzy Sets Syst 159(8):990–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Li I-H, Lee L-W (2011) A hierarchical structure of observer-based adaptive fuzzy-neural controller for MIMO systems. Fuzzy Sets Syst 185(1):52–82

    Article  MathSciNet  MATH  Google Scholar 

  • Malla S, Bhende C (2014) Voltage control of stand-alone wind and solar energy system. Int J Electr Power Energy Syst 56:361–373

    Article  Google Scholar 

  • Man K-F, Tang K-S, Kwong S (1999) Genetic algorithms: concepts and designs. Springer, New York, NY, USA

  • Mitchell M (1999) An introduction to genetic algorithms. Massachusetts Institute of Technology Book, Cambridge, MA, USA

  • Niemann H, Stoustrup J (2005) Passive fault tolerant control of a double inverted pendulum a case study. Control Eng Pract 13(8):1047–1059

    Article  Google Scholar 

  • No T-S, Mina B-M, Stone R-H, Wong K-C (2006) Control and simulation of arbitrary flight trajectory-tracking. Department of Aerospace Engineering, Chonbuk National University, Deokjin Dong, Chonju NSW, pp 560–756

    Google Scholar 

  • No T-S, Kim J-E, Moon J-H, Kim S-J (2009) Modeling, control, and simulation of dual rotor wind turbine generator system. Renew Energy 34(10):2124–2132

    Article  Google Scholar 

  • Oh S-K, Jung S-H, Pedrycz W (2009) Design of optimized fuzzy cascade controllers by means of hierarchical fair competition-based genetic algorithms. Exp Syst Appl 36(9):11641–11651

    Article  Google Scholar 

  • Ornelas-Tellez F, Sanchez E, Loukianov A, Rico J (2014) Robust inverse optimal control for discrete-time nonlinear system stabilization. Eur J Control 20(1):38–44

    Article  MathSciNet  MATH  Google Scholar 

  • Ouyang P-R, Acob J, Pano V (2014) PD with sliding mode control for trajectory tracking of robotic system. Robot Comput Integr Manuf 30(2):189–200

    Article  Google Scholar 

  • Pedrycz W, Chen S (2011) Granular computing and Intelligent system, design with information granules of higher order and higher type, vol 13. Intelligent systems reference library, Springer, Heidelberg, Germany

  • Pedrycz W, Chen S-M (2015a) Information granularity, big data, and computational intelligence. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen S-M (2015b) Granular computing and decision-making: interactive and iterative approaches. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley-Interscience New York, NY

  • Rachman E, Jaam J, Hasnah A (2004) Non-linear simulation of controller for longitudinal control augmentation system of F-16 using numerical approach. Inf Sci J 164(1–4):47–60

    Article  MATH  Google Scholar 

  • Reiner J, Balas G, Garrard W (1996) Flight control design using robust dynamic inversion and time-scale separation. Autom J 32(11):1493–1504

    Article  MATH  Google Scholar 

  • Sanchez E, Becerra H, Velez C (2007) Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. J Inform Sci 177(10):1999–2022

    Article  Google Scholar 

  • Sefer K, Omer C, Okyay K (2010) Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Exp Syst Appl J 37(2):1229–1234

    Article  Google Scholar 

  • Sepulveda R, Castillo O, Melin P, Montiel O (2007) An efficient computational method to implement type-2 fuzzy logic in control application. In: Melin P, Castillo O, Ramírez EG, Kacprzyk J, Pedrycz W (eds) Analysis and design of intelligent system using soft computing techniques, vol 41. Springer, Berlin, Heidelberg, pp 45–52

  • Song Q, Song Y-D (2014) Generalized PI control design for a class of unknown non affine systems with sensor and actuator faults. Syst Control Lett 64:86–95

    Article  MATH  Google Scholar 

  • Song Y, Wang H (2009) Design of flight control system for a small unmanned tilt rotor aircraft. Chin J Aeronaut 22(3):250–256

    Article  MathSciNet  Google Scholar 

  • Sung H, Kim D, Park J, Joo Y (2010) Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach. Fuzzy Sets Syst 161(6):919–933

    Article  MathSciNet  MATH  Google Scholar 

  • Tao J, Lu R, Shi P, Su H, Wu Z-G (2017a) Dissipativity-based reliable control for fuzzy markov jump systems with actuator faults. IEEE Trans Cybern 47(9):2377–2388

    Article  Google Scholar 

  • Tao J, Lu R, Su H, Shi P, Wu Z-G (2017b) Asynchronous filtering of nonlinear markov jump systems with randomly occurred quantization via T-S fuzzy models. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2754999

    Article  Google Scholar 

  • Tao J, Lu R, Su H, Wu Z-G (2017c) Filtering of T-S fuzzy systems with nonuniform sampling. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2017.2735541

    Article  Google Scholar 

  • Tiwari S, Kaur G (2011) Analysis of Fuzzy PID and Immune PID controller for the three tank liquid level control. Int J Soft Comput Eng 1(4):185–189. ISSN: 2231–2307

    Google Scholar 

  • Tsai P-W, Pan J-S, Chen S-M, Liao B-Y, Hao S-P (2008) Parallel cat swarm optimization. Proceedings of the 2008 international conference on machine learning and cybernetics, Kunming, China, vol 6, pp 3328–3333

  • Tsai P-W, Pan J-S, Chen S-M, Liao B-Y (2012) Enhanced parallel cat swarm optimization based on the Taguchi method. Exp Syst Appl 39(7):6309–6319

    Article  Google Scholar 

  • Wu Z-G, Dong S, Shi P, Su H, Huang T, Lu R (2017) Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems. Syst Man Cybern 47:2388–2397

    Google Scholar 

  • Yu Y, Chen L, Sun F, Wu C (2005) Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine. Appl Energy 80(1):1–10

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh L (1966) Shadows of fuzzy sets. Probl Peredachi Inf 2(1):37–44

    MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern SMC 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L (1994) Fuzzy logic, neural networks and soft computing. Commun ACM 37(3):77–84

    Article  Google Scholar 

  • Zadeh LA (1998) Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput 2:23–25

    Article  Google Scholar 

  • Zadeh L (2000) Fuzzy sets and fuzzy information granulation theory. Beijing Normal University Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, O., Cervantes, L., Melin, P. et al. A new approach to control of multivariable systems through a hierarchical aggregation of fuzzy controllers. Granul. Comput. 4, 1–13 (2019). https://doi.org/10.1007/s41066-018-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-018-0078-5

Keywords

Navigation