Skip to main content

Advertisement

Log in

Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat

  • Research article
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Burning of peatlands is estimated to be a large source of gas-phase non-methane organic compounds and organic aerosol to the atmosphere. However, little is known about the chemical characteristics of intermediate-volatility and semi-volatile organic compounds (I/SVOC) emitted from peat combustion. Quantifying I/SVOC emissions and their subsequent transformation to secondary organic aerosol (SOA) is critical for elucidating biomass-burning (BB) SOA contributions to ambient aerosol concentrations and reducing uncertainties in aerosol radiative forcing from local to global scales. In this study, we provide one of the first estimates of the emissions of eighty-seven different polar I/SVOCs (I/SV-POCs) in both gas- and particle-phases from the laboratory combustion of peat from Alaska and Florida, USA and Pskov region of Russia. The measured I/SV-POCs include alkanoic, alkenoic, alkanedioic, substituted benzoic, resin, methoxy, and aromatic dicarboxylic acids, methoxy phenols, and anhydrous sugars. To understand the phase-partitioning behavior of the I/SV-POCs, the data is presented in two-dimensional volatility-oxidation state, volatility-solubility, and chemical partitioning space diagrams. For all fuels, methoxy phenols and C\(_{6}\)–C\(_{10}\) alkanoic acids have the highest gas-phase mass emissions factors. Levoglucosan, a commonly used organic marker for BB, is the most abundant particle-phase I/SV-POC by mass. Alkanoic acids (C\(_{10}\)–C\(_{20})\), alkanedioic acids with carbon number <7, and aromatic dicarboxylic acids (phthalic and isophthalic acids) are distributed between gas and particle-phases. For Alaskan and Russian peat fuels, more than 80% of I/SV-POC mass resides in the particle-phase while emissions from Florida peat are more evenly distributed between the two phases (particle-phase \(\sim \)60% of mass).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072

    Article  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosol from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the amazon. Science 303:1337–1342

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Karcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang B, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552

    Article  Google Scholar 

  • Chakrabarty RK, Gyawali M, Yatavelli RLN, Pandey A, Watts AC, Knue J, Chen L-WA, Pattison RR, Tsibart A, Samburova V, Moosmuller H (2016) Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing. Atmos Chem Phys 16:3033–3040

    Article  Google Scholar 

  • Chen L-WA, Moosmuller H, Arnott WP, Chow JC, Watson JG, Susott RA, Babbitt RE, Wold CE, Lincoln EN, Hao WM (2007) Emissions from laboratory combustion of wildland fuels: emission factors and source profiles. Environ Sci Technol 41:4317–4325

    Article  Google Scholar 

  • Chen L-WA, Verburg P, Shackelford A, Zhu D, Susfalk R, Chow JC, Watson JG (2010) Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmos Chem Phys 10:6617–6625

    Article  Google Scholar 

  • Chow JC, Watson JG, Chen L-WA, Chang M-CO, Robinson NF, Trimble DL, Kohl SD (2007) The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Air Waste Manag Assoc 57:1014–1023

    Article  Google Scholar 

  • Chow JC, Lowenthal DH, Chen L-WA, Wang X, Watson JG (2015) Mass reconstruction methods for PM\(_{2.5}\): a review. Air Qual Atmos Health 8:243–263

    Article  Google Scholar 

  • Compernolle S, Ceulemans K, Muller J-F (2011) EVAPORATION: a new vapor pressure estimation method for organic molecules including non-additivity and intramolecular interactions. Atmos Chem Phys 11:9431–9450

    Article  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Article  Google Scholar 

  • Donahue NM, Robinson AL, Stanier CO, Pandis SN (2006) Couple partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol 40:2635–2643

    Article  Google Scholar 

  • Donahue NM, Kroll JH, Pandis SN, Robinson AL (2012) A two-dimensional volatility basis set—part 2: diagnostics of organic-aerosol evolution. Atmos Chem Phys 12:615–634

    Article  Google Scholar 

  • Ervens B, Turpin BJ, Weber RJ (2011) Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys 11:11069–11102

    Article  Google Scholar 

  • Grienshop AP, Logue JM, Donahue NM, Robinson AL (2009) Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurements and simulation of organic aerosol evolution. Atmos Chem Phys 9:1263–1277

    Article  Google Scholar 

  • Hatch LE, Luo W, Pankow JF, Yokelson RJ, Stockwell CE, Barsanti KC (2015) Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry. Atmos Chem Phys 15:1865–1899

    Article  Google Scholar 

  • Hodzic A, Aumont B, Knote C, Lee-Taylor J, Madronich S, Tyndall G (2014) Volatility dependence of Henry’s law constants of condensable organics: application to estimate depositional loss of secondary organic aerosols. Geophys Res Lett 41:4795–4807. doi:10.1002/2014GL060649

    Article  Google Scholar 

  • Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J Geophys Res Biogeosci 115. doi:10.1029/2009JG001270

  • Iinuma Y, Bruggemann E, Gnauk T, Muller K, Andreae MO, Helas G, Parmar R, Hermann H (2007) Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, Savanna grass, and German and Indonesian peat. J Geophys Res 112. doi:10.1029/2006JD007120

  • Jacobson MZ (2014) Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos 119:8980–9002. doi:10.1002/2014JD021861

    Article  Google Scholar 

  • Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489–492

    Article  Google Scholar 

  • Marlier M, DeFries RS, Kim PS, Gaveau DLA, Koplitz SN, Jacob DJ, Mickley LJ, Margono BA, Myers SS (2015) Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ Res Lett 10. doi:10.1088/1748-9326/10/5/054010

  • May AA, Levin EJT, Hennigan CJ, Riipinen I, Lee T, Collett J, Jimenez JL, Kreidenweis SM, Robinson AL (2013) Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. J Geophys Res Atmos 118:1–12

    Google Scholar 

  • Mazzoleni L, Zielinska B, Moosmuller H (2007) Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion. Environ Sci Technol 41:2115–2122

    Article  Google Scholar 

  • Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19:67–106

    Article  Google Scholar 

  • Page SE, Siegart F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  Google Scholar 

  • Raventos-Duran T, Camredon M, Valroso R, Mouchel-Vallon C, Aumont B (2010) Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest. Atmos Chem Phys 10:7643–7654. doi:10.5194/acp-10-7643-2010

    Article  Google Scholar 

  • Samburova V, Connolly J, Gyawali M, Yatavelli RLN, Watts AC, Chakrabarty RK, Zielinska B, Moosmuller H, Khlystov A (2016) Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci Total Environ 568:391–401

    Article  Google Scholar 

  • Stockwell CE, Yokelson RJ, Kreidenweis SM, Robinson AL, DeMott PJ, Sullivan RC, Reardon J, Ryan KC, Griffith DWT, Stevens L (2014) Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos Chem Phys 14:9727–9754

    Article  Google Scholar 

  • Stockwell CE, Veres PR, Williams J, Yokelson RJ (2015) Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmos Chem Phys 15:845–865

    Article  Google Scholar 

  • Stockwell CE, Jayarathne T, Cochrane MA, Ryan KC, Putra EI, Saharjo BH, Nurhayati AD, Albar I, Blake DR, Simpson IJ, Yokelson RJ (2016) Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Nino. Atmos Chem Phys 16:11711–11732

    Article  Google Scholar 

  • Subramanian R, Khlystov A, Cabada J, Robinson AL (2004) Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Sci Technol 38:27–48

    Article  Google Scholar 

  • Tian J, Chow JC, Cao J, Han Y, Ni H, Chen L-WA, Wang X, Huang R, Moosmuller H, Watson JG (2015) A biomass combustion chamber: design, evaluation, and a case study of wheat straw combustion emission test. Aerosol Air Qual Res 15:2104–2114

    Google Scholar 

  • Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2010) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31

    Article  Google Scholar 

  • Turetsky MR, Benscoter B, Page SE, Rein G, van der Werf GR, Watts AC (2015) Global vulnerability of peatlands to fire and carbon loss. Nature Geosci 8:11–14

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  • Wania F, Lei YD, Wang C, Abbatt JPD, Goss K-U (2015) Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation. Atmos Chem Phys 15:3395–3412

    Article  Google Scholar 

  • Wennberg PO, Hanisco TF, Jaegle L, Jacob DJ, Hintsa EJ, Lanzendorf EJ, Anderson JG, Gao R-S, Keim ER, Donnelly S, Del Negro L, Fahey DW, McKenn SA, Salawitch RJ, Webster CR, May RD, Herman RL, Proffitt MH, Margitan JJ, Atlas EL, Schauffler SM, Flocke FM, McElroy CT, Bui TP (1998) Hydrogen radicals, nitrogen radicals, and the production of O\(_{3}\) in the upper troposphere. Science 279:49–53

    Article  Google Scholar 

  • Yee LD, Kautzman KE, Loza CL, Schilling KA, Coggon MM, Chhabra PS, Chan MN, Chan AWH, Hersey SP, Crounse JD, Wennberg PO, Flagan RC, Seinfeld JH (2013) Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmos Chem Phys 13:8019–8043

    Article  Google Scholar 

  • Yokelson RJ, Burling IR, Gilman JB, Warneke C, Stockwell CE, de Gouw JA, Akagi SK, Urbanski SP, Veres P, Roberts JM, Kuster WC, Reardon J, Griffith DWT, Johnson TJ, Hosseini S, Miller JW, Crocker Iii DR, Jung H, Weise DR (2013) Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos Chem Phys 13:89–116

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the United States National Science Foundation (NSF) under Grant Nos. AGS1544425, AGS1455215, AGS1464501, CHE1214163, DEB1342094 and DEB1354482; United States National Aeronautics and Space Administration Research Opportunities in Space and Earth Sciences (NASA ROSES) program under Grant Nos. NNX15AI48G and NNX15AI66G; NASA Experimental Program to Stimulate Competitive Research (EPSCoR) program under Cooperative Agreement No. NNX14AN24A; and the support of Desert Research Institute’s Wildland Fire Science Center (WFSC), IPA, and EDGES programs. AH thanks the United States Environmental Protection Agency Science to Achieve Research (EPA STAR) program Grant 83587701-0.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reddy L. N. Yatavelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 317 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatavelli, R.L.N., Chen, LW.A., Knue, J. et al. Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Sci Eng 1, 25–32 (2017). https://doi.org/10.1007/s41810-017-0001-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-017-0001-5

Keywords

Navigation