Skip to main content
Log in

Production of epoxidized cardanol–based vinyl ester resins with cinnamic acid for eco-friendly coating materials

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Environmental concerns about coating material have led manufacturers towards considering bio-based alternatives to conventional petroleum–derived epoxy resins. Considering these concerns with rise in prices and high depletion of petroleum resources, a viable alternative polymer resin has been synthesized from characteristic cashew nut shell liquid (CNSL). In this study, cardanol, a major component of cashew nut shell liquid, was used to synthesize cardanol-based vinyl ester resole (CBVER) and cardanol-based vinyl ester novolac (CBVEN) resins. The vinyl ester resins synthesized were characterized using international standard methods. The molecular weight of the resins was determined to be 1069 and 1001 g/mol for CBVER and CBVEN, respectively, using gas chromatographic mass spectroscopy (GCMS). Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis were used to identify the functional groups and analyze the material weight changes with stability relative to temperature. FTIR results revealed functional groups typical of thermosetting resin. The results of the mechanical and thermal properties of the resins showed improved performance and material’s thermal stability (up to a temperature of 280 °C), respectively. The chemical resistance properties of the cardanol-based vinyl ester resins showed improved performance when subjected to solvent, alkalis, and acids, an indication of anti-corrosive properties. The better performances of cardanol-based vinyl ester resins obtained from this study is justifiable and suggest applicability in coatings, for both anticorrosion and interior/exterior decorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.V. Sadavarte, Difunctional monomers starting from cashew nut shell liquid (CNSL) and high-performance polymers therefrom. Doctoral dissertation, University of Pune, India (2012)

  2. M.B. Gawande, V.D.B. Bonifácio, R. Luque, P.S. Branco, R.S. Varma, Solvent free and catalysts-free chemistry: a benign pathway to sustainability. Chem. Sus. Chem. 7, 24–44 (2014)

    Article  CAS  Google Scholar 

  3. P. Anastas, N. Eghbali, Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010)

    Article  CAS  Google Scholar 

  4. K.P. Unnikrishnan, E.T. Thachil, Synthesis and characterization of cardanol-based epoxy systems. Des. Monomers Polym. 11, 593–607 (2008)

    Article  CAS  Google Scholar 

  5. R.C. Cioc, E. Ruijter, R.V.A. Orru, Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem. 16, 2958–2975 (2014)

    Article  CAS  Google Scholar 

  6. C.C. Ugoamadi, Comparison of cashew nut shell liquid (CNS) resin with polyester resin in composite development. Niger. J. Technol. Dev. 10(2), 17–21 (2013)

    Google Scholar 

  7. A. Zlatanic, Z.S. Petrovic, K. Dusek, Structure and properties of triolein-based polyurethane networks. Biomacromol 3, 1048–1056 (2003)

    Article  Google Scholar 

  8. S. Gopalakrishnan, N.T. Nevaditha, C.V. Mythili, Synthesis and characterization of bifunctional monomers for high performance polymers from renewable resource. Int. J. Chem. Technol. Res. 4(1), 48–54 (2012)

    CAS  Google Scholar 

  9. R. Yadav, D. Srivastava, Blends of cardanol based epoxidised novolac resins and CTBN for applications in surface coatings. J. Coat. Technol. Res. 7(5), 557–568 (2010)

    Article  CAS  Google Scholar 

  10. X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fibre for use in natural fibre reinforced composites; A Review. J. Polym. Environ. 15, 25–33 (2007)

    Article  Google Scholar 

  11. D. D’Amico, L. Longo, C. Stifani, A. Tarzia, Cardanol-based novolac resins as curing agents of epoxy resins Pietro Campaner. J. Appl. Polym. Sci. 114(1), 3585–3591 (2009)

    Google Scholar 

  12. S.K. Kyei, O. Akaranta, G. Darko, U.J. Chukwu, Extraction, characterization and application of cashew but shell liquid from cashew but shells. Chem. Sci. Int. J. 28(3), 1–10 (2019)

    Article  Google Scholar 

  13. S. Mohapatra, G.B. Nando, Cardanol: a green substitute for aromatic oil as a plasticizer in natural rubber. Royal Soc. Chem. Adv. 4, 15406–15418 (2014)

    CAS  Google Scholar 

  14. M. Yuliana, B.T. Nguyen-Thi, S. Faika, L.H. Huynh, F.E. Soetaredjo, Ju. Yi-Hsu, Separation and purification of cardol, cardanol and anacardic acid from cashew (Anacardium occidentale L.) nut-shell liquid using a simple two-step column chromatography. J. Taiwan Inst. Chem. Eng. 45, 2187–2193 (2014)

    Article  CAS  Google Scholar 

  15. R. Ikeda, H. Tanaka, H. Uyama, S. Kobayashi. Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid. Polymer. 43(12), 3845-3481 (2002)

  16. S. Kanehashi, K. Yokoyama, R. Masuda, T. Kidesaki, K. Nagai, T. Miyakoshi, Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. J. Appl. Polym. Sci. 2468–2478 (2013). https://doi.org/10.1002/app.39382

  17. J.-H. Lee, J. Jeon, S. Kim, Green adhesives using tannin and cashew nut shell liquid for environment-friendly furniture materials. J. Korea Furnit. Soc. 22(3), 219–229 (2011)

    Google Scholar 

  18. V. Kathir, F. Emerson, A process for selective extraction of cardanol from cashew nut shell liquid (CNSL) and its useful applications Solomon. Int. J. Sci. Eng. Res. 4(3), 1–4 (2013)

    Google Scholar 

  19. C. Voirin, S. Caillol, N.V. Sadavarte, B.V. Tawade, B. Boutevinab, P.P. Wadgaonkar, Functionalization of cardanol: towards biobased polymers and additives. Polym. Chem. 5, 3142 (2014)

    Article  CAS  Google Scholar 

  20. R. Paramashiyappa, P. Phani Kumar, J. Vithayathil, A. Srinivasa Rao, Novel method for isolation of major phenolic constituents from Cashew (Anacardium occidentale L) nut shell Liquid. J. Agric. Food Chem. 49, 2548–2551 (2001)

    Article  Google Scholar 

  21. A. Devi, D. Srivatsava, Studies on the blends of cardanol- based epoxidised nonolac resin and CTPB. Eur. Polymer J. 43(6), 2422–2432 (2007)

    Article  CAS  Google Scholar 

  22. FAOSTAT, Food and Agriculture Organization of the United Nations Data. Statistical Databases. (2012). http://faostat.fao.org/default.aspx?lang=en. Accessed 11/01/2022

  23. C.K.S. Pillai, V.S. Prasad, J.D. Sudha, S.C. Bera, A.R.R. Menon, J. Appl. Polym. Sci. 41, 2487 (1990)

    Article  CAS  Google Scholar 

  24. A.R.R. Menon, C.K.S. Pillai, G.B. Nando, J. Adhes. Sci. Technol. 9, 443 (1995)

    Article  CAS  Google Scholar 

  25. M. Saminathan, C.K.S. Pillai, C. Krishn, C. Pavithran, Macromolecules 26, 7103 (1993)

    Article  CAS  Google Scholar 

  26. C.K.S. Pillai, D.C. Sherrington, A. Sneddon, Polym. Commun. 33(18), 3968–3970 (1992)

    Article  CAS  Google Scholar 

  27. R. Yadav, D. Srivastava. Material chemistry and physics. 1(15), 74-81 (2007)

  28. L.K. Aggarwal, P.C. Thapliyal, S.R. Karade, Anticorrosive properties of the epoxy cardanol, based paints. Prog. Org. Coat. 59(1), 76–80 (2007)

    Article  CAS  Google Scholar 

  29. K. Yamada, H. Yamane, K. Kumada, S. Tanabe, T. Kajiyama, Plasma-graft polymerization of a monomer with double bonds onto the surface of carbon fiber and its adhesion to a vinyl ester resin. J. Appl. Polym. Sci. 90, 2415–2419 (2003)

    Article  CAS  Google Scholar 

  30. B.F, Howell, De. Realf. Pigmented coatings cured with visible light, Polym. Mater. Sci. Eng. 74, 387–38 (1996)

  31. S. Masujiro, J. Kazuyoshi, Thermosetting printing ink. JP 74(67), 709 (1974)

    Google Scholar 

  32. M. Henne, C. Breyer, M. Niedermeir, P.A. Ermanni, New kinetics and viscosity model for liquid composite molding simulations in an industrial environment. Polym. Compos. 25, 255–269 (2004)

    Article  CAS  Google Scholar 

  33. P. Rahmawati, A.H. Ramelan, S.D. Marliyana, N.S. Suharty, S. Wahyuningsih, Synthesis of cardanol-based novolac resin from cashew nut shell liquid. J. Eng. Sci. 15, 23–33 (2019)

    Article  Google Scholar 

  34. S.K. Shukla, K. Srivastava, D. Srivastava, Studies on the thermal, mechanical and chemical resistance properties of natural resource derived polymers. Mater. Res. 18(6), 1217–1223 (2015). https://doi.org/10.1590/1516-1439.007715

    Article  CAS  Google Scholar 

  35. M. Sultania, J.S.P. Rai, D. Srivastava, Studies on the synthesis and curing of epoxidized novolac vinyl ester resin from renewable resource material. Eur Polym J 46, 2019–2032 (2010)

    Article  CAS  Google Scholar 

  36. S. Rwahwire, B. Tomkova, A.P. Periyasamy and B.M. Kale (2019). Green thermoset reinforced biocomposites. Green composites for automotive applications. Chapter 3, 61–80 (2019). https://doi.org/10.1016/B978-0-08-102177-4.00003-3

  37. B. Lochab, S. Shukla, I.K. Varma, Naturally occurring phenolic sources: Monomers and polymers. RSC Adv. 4(42), 21712–21752 (2014). https://doi.org/10.1039/c4ra00181h

    Article  CAS  Google Scholar 

  38. N. Zora, T. Rigaux, J.C. Buvat, D. Lefebvre, S. Leveneur, Influence assessment of inlet parameters on thermal risk and productivity: application to the epoxidation of vegetable oils. J. Loss Prev. Process Ind. 72, 104551 (2021)

    Article  CAS  Google Scholar 

  39. U.P. Laverdura, L. Rossi, F. Ferella, C. Courson, A. Zarli, R. Alhajyoussef, K. Gallucci, Selective catalytic hydrogenation of vegetable oils on lindlar catalyst. Asc Omega 5, 22901–22913 (2020)

    Article  CAS  Google Scholar 

  40. S. Soares, F.R.P. Rocha, Multi-energy calibration to circumvent matrix effects in the determination of biodiesel quality parameters by UV-Vis spectrophotometry. Talanta 209, 120584 (2020)

    Article  CAS  Google Scholar 

  41. V.B. Borugadda, V.V. Goud, Hydroxylation and hexanoylation of epoxidized waste cooking oil and epoxidized waste cooking oil methyl esters: Process optimization and physico-chemical characterization. Ind. Crop. Prod. 133, 151–159 (2019)

    Article  CAS  Google Scholar 

  42. Y. Su, S. Zhang, Y. Chen, T. Yuan, Z. Yang, One-step synthesis of novel renewable multi-functional linseed oil-based acrylate prepolymers and its application in UV-curable coatings. Prog. Org. Coat. 148, 105820 (2020)

    Article  CAS  Google Scholar 

  43. F. Dominici, M.D. Samper, A. Carbonell-Verdu, F. Luzi, J. López-Martínez, L. Torre, D. Puglia, Improved toughness in lignin/natural fiber composites plasticized with epoxidized and maleinized linseed oils. Materials 13, 600 (2020)

    Article  CAS  Google Scholar 

  44. Z. Zhou, J.P.D. Abbatt, Formation of gas-phase hydrogen peroxide via multiphase ozonolysisi of unsaturated lipids. Environ. Sci. Technol. Lett. 8, 114–120 (2021)

    Article  CAS  Google Scholar 

  45. P.M. Paraskar, R.D. Kulkarni, Synthesis of isostearic acid/dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings. J. Polym. Environ. 29, 54–70 (2021)

    Article  CAS  Google Scholar 

  46. W.R. Slama. Polyester and vinyl ester coatings. Journal of Protective Coatings & Linings. 88–109 (1996)

  47. F.W. Njuku, P.M. Nwangi, G.T. Thiongo, Evaluation of cashew nut liquid based products as a reactive diluents for alkyd coatings. Int. J. Adv. Res. 2(3), 5–10 (2014)

    Google Scholar 

  48. J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liangd, Z. Guo, In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J. Mater. Chem. 20, 4937–494 (2010). https://doi.org/10.1039/c0jm00063a

    Article  CAS  Google Scholar 

  49. L. Preeti, N. Anil, Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind. Crop. Prod. 21(1), 49–64 (2005). https://doi.org/10.1016/j.indcrop.2003.12.006

    Article  CAS  Google Scholar 

  50. M.M. Rahman, A.N. Netravali, B.J. Tiimob, V.K. Rangari, Bioderived green composite from soy protein and eggshell nanopowder. ACS Sustain. Chem. Eng. 2, 2329–2337 (2014)

    Article  CAS  Google Scholar 

  51. B.J. Tiimob, S. Jeelani, V.K. Rangari, Eggshell reinforced biocomposite – an advanced “green” alternative structural material. J. Appl. Polym. Sci. 133, 1–10 (2016). https://doi.org/10.1002/app.43124

    Article  CAS  Google Scholar 

  52. C. Wang, Q. Sun, K. Lei, C. Chen, L. Yao, Z. Peng, Effect of toughening with different liquid rubber on dielectric relaxation properties of epoxy resin. Polymers 12, 433 (2020). https://doi.org/10.3390/polym12020433

    Article  CAS  Google Scholar 

  53. K.S.M. Barczewski, R. Gorny, A. Klozinski, Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bullerin 75, 2511–2528 (2018). https://doi.org/10.1007/s00289-017-2163-3

    Article  CAS  Google Scholar 

  54. S. Ma, W. Liu, N. Gao, Z. Yan, Y. Zhao, Synthesis and properties of LED-packaging epoxy resin toughened by a novel polysiloxane from hydrolysis and condensation. Macromol. Res. 19(9), 972–979 (2011). https://doi.org/10.1007/s13233-0110911-z

    Article  CAS  Google Scholar 

  55. X. Jing, H. Mi, B. Napiwocki, X. Peng, L. Turng, Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125, 557–570 (2017). https://doi.org/10.1016/j.carbon.2017.09.071

    Article  CAS  Google Scholar 

  56. M. Shibata, Y. Itakura, H. Watanabe, Bio-based thermosetting resins composed of cardanol novolac and bismaleimide. Polym. J. 45, 758–765 (2013)

    Article  CAS  Google Scholar 

  57. E. Kinaci, E. Can, J.J. LaScala, G.R. Palmese, Influence of epoxidized cardanol functionality and reactivity on network formation and properties. Polymers 12, 1956 (2020). https://doi.org/10.3390/polym12091956

    Article  CAS  Google Scholar 

  58. Xi. Zhang, V. Bitaraf, S. Wei, Z. Guo, Vinyl ester resin: rheological behaviors, curing kinetics, thermomechanical, and tensile properties. Am. Inst. Chem. Eng. (2013). https://doi.org/10.1002/aic.14277266-274

    Article  Google Scholar 

  59. F. Yeasmin, A.K. Mallik, A.H. Chisty, F.N. Robel, Md. Shahruzzaman, P. Haque, M. Mizanur Rahman, N. Hano, M. Takafuji, H. Ihara. Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler Heliyon, 7(1), e05959 (2021). https://doi.org/10.1016/j.heliyon.2021.e05959

  60. S.A. Kolawole, S.A. Danladi, U.S. Ishiaku, B.M. Dauda, Thermogravimetry analysis of epoxy and unsaturated polyester filled with some agricultural waste of dates palm (Phoenix dactylifera) and African Elemi (Canarium shweinfurthii) particulate composites. J. Mater. Sci. Res. Rev. 3(4), 1–9 (2019)

    Google Scholar 

  61. K. Strzelec, Studies on the properties of epoxy resins cured with polythiourethanes. Int. J. Adhes. Adhes. 27(2), 9–101 (2007)

  62. A.J. Farhan, Characterization the thermal degradation E kinetic of unsaturated polyester and polyester/silica nanoparticles composites by TGA and DSC analysis. J Adv. Res. Fluid Mech. Thermal Sci. 71(1), 10–20 (2020)

    Article  Google Scholar 

  63. F. Jaillet, H. Nouailhas, R. Auvergne, A. Ratsimihety, B. Boutevin, S. Caillol. Synthesis and characterization of novel vinylester prepolymers from cardanol. Eur. J. Lipid Sci. Technol. 116, 928–939 (2014). https://doi.org/10.1002/ejlt.201300487

  64. M.S Garga, K. Srivastavab, D. Srivastava. Physical and chemical toughening of cardanol-based vinyl ester resin using CTBN: A study on spectral, thermal and morphological characteristics. Prog. Org. Coat. 78, 307–317 (2014). https://doi.org/10.1016/j.porgcoat.2014.08.004

  65. J.S. Terry, A.C. Taylor, The properties and suitability of commercial bio-based epoxies for use in fiber-reinforced composites. J. Appl. Polym. Sci. 138, e50417 (2021). https://doi.org/10.1002/app.50417

    Article  CAS  Google Scholar 

  66. F. Wang, J. Liao, C. Huang, H. Yu, J. Yan, H. Li, Study on the damping dynamics characteristics of a viscoelastic damping material. Processes 10, 635 (2022). https://doi.org/10.3390/pr10040635

    Article  CAS  Google Scholar 

  67. B. Herzog, D.J. Gardner, R. Lopez-Anido, B. Goodell, Glass transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. J. Appl. Polym. Sci. 97, 2221–2229 (2005)

    Article  CAS  Google Scholar 

  68. M. Kathalewar, A. Sabnis, Epoxy resin from cardanol as partial replacement of bisphenol A-based epoxy for coating application J. Coat. Technol. Res. 11, 601–618 (2014). https://doi.org/10.1007/s11998-014-9570-2

  69. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, 2nd edn. (NACE, Houston, 1974)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Project-200 of Prof. Charles Esimone, Vice Chancellor, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iheoma Chigoziri Nwuzor.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwuzor, I.C., Okolie, P.C., Ezeani, O.E. et al. Production of epoxidized cardanol–based vinyl ester resins with cinnamic acid for eco-friendly coating materials. emergent mater. 5, 2061–2074 (2022). https://doi.org/10.1007/s42247-022-00396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00396-6

Keywords

Navigation