Skip to main content
Log in

Instability and critical pulling rate of tethers in tether extension process using a mathematical model

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

Cells and organelles are enclosed by a biological membrane called the lipid bilayer membrane. These membranes appear in a variety of complex shapes under certain conditions of the surrounding environment. Shape transformation of lipid bilayers is involved in many cellular processes to perform essential functions. Hence, dynamic behavior of lipid bilayer membranes is one of the important subjects of researches in the last decades. Among different shape transformations of biomembranes, formation of tubes and tethers is quite common in cells and between cells. Tubular networks of the Golgi apparatus and the smooth part of the endoplasmic reticulum and tubes involving cell-cell adhesion are clear examples of formation of tubes. Most of these shape transformations in the cell are carried out by the action of motor proteins of cytoskeleton. In this paper, a mathematical model based on the mechanical properties of fluid bilayer membranes is utilized to study the dynamic behavior of the tether extension process. The dynamic pulling force of the tether extracted by a constant pulling rate is obtained as a function of tether length. The effect of the pulling rates on the dynamic pulling force and shape transformation of bilayer membrane is investigated. By increasing the pulling rate, pearling occurred in the tether. For a specific value of pulling rate called the critical pulling rate, the dynamic pulling force tends to zero and the tether becomes unstable. The effect of material parameters on the critical pulling rate of tethers is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murate, M., Kobayashi, T.: Revisiting transbilayer distribution of lipids in the plasma membrane. J. Chem. Phys. Lipids. 194, 58–71 (2016)

    Article  Google Scholar 

  2. Sackmann, E.: Biological membranes architecture and function. J. Struc. Dyn. Membr. 1, 1–63 (1995)

    Google Scholar 

  3. McNaught, A.D., McNaught, A.D.: Compendium of Chemical Terminology, vol. 1669, (1997) Blackwell Science Oxford

    MATH  Google Scholar 

  4. Voet, D.: Fundamentals of Biochemistry Life at the Molecularlevel, vol. 849, 6th edn. John Wiley & Sons (2012)

  5. Johnson, A., Lewis, J.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  6. Döbereiner, H., Käs, J., Noppl, D., Sprenger, I., Sackmann, E.: Budding and fission of vesicles. Biophys. J. 65(4), 1396–1403 (1993)

    Article  Google Scholar 

  7. Käs, J., Sackmann, E.: Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 60(4), 825–844 (1991)

    Article  Google Scholar 

  8. Seifert, U., Berndl, K., Lipowsky, R.: Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. J. Phys. Rev. A. 44(2), 1182 (1991)

    Article  Google Scholar 

  9. Seifert, U., Lipowsky, R.: Morphology of vesicles. In: Handbook of biological physics, vol. 1, pp. 403–464 (1995)

    Google Scholar 

  10. Svetina, S.: Vesicle budding and the origin of cellular life. J. ChemPhysChem. 10(16), 2769–2776 (2009)

    Article  Google Scholar 

  11. Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K.A., Lipowsky, R.: A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter. 18(28), S1151–S1176 (2006)

    Article  Google Scholar 

  12. Wang, J.H.-C., Thampatty, B.P.: An introductory review of cell mechanobiology. J. Biomech. Model. Mechanobiol. 5(1), 1–16 (2006)

    Article  Google Scholar 

  13. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. J. Z. Naturforsch. C. 28(11–12), 693–703 (1973)

    Article  Google Scholar 

  14. Deuling, H., Helfrich, W.: The curvature elasticity of fluid membranes: a catalogue of vesicle shapes. J. Physique. 37(11), 1335–1345 (1976)

    Article  Google Scholar 

  15. Evans, E.A.: Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14(12), 923–931 (1974)

    Article  Google Scholar 

  16. Seifert, U.: Configurations of fluid membranes and vesicles. J. Adv. Phys. 46(1), 13–137 (1997)

    Article  Google Scholar 

  17. Rahimi, M., Arroyo, M.: Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. J. Phys. Rev. E. 86(1), 011932–011946 (2012)

    Article  Google Scholar 

  18. Karimi, A., Mirdamadi, H., Ziaei-Rad, S.: Mathematical modeling of dynamic behavior of fluid bilayer membranes under the effect of density asymmetry. J. Theor. Biol. 330–344 (2018)

  19. Aubertin, K., Tailleur, J., Wilhelm, C., Gallet, F.: Impact of a mechanical shear stress on intracellular trafficking. J. Soft Matter. 13(31), 5298–5306 (2017)

    Article  Google Scholar 

  20. Sackmann, E., Smith, A.-S.: Physics of cell adhesion: some lessons from cell-mimetic systems. J. Soft Matter. 10(11), 1644–1659 (2014)

    Article  Google Scholar 

  21. Schmitz J, Gottschalk K-EJSM (2008) Mechanical regulation of cell adhesion. 4 (7):1373–1387

  22. Mollenhauer, H., Morré, D.J.: The tubular network of the Golgi apparatus. J. Histochem. Cell Biol. 109(5–6), 533–543 (1998)

    Article  Google Scholar 

  23. Waterman-Storer, C.M., Salmon, E.: Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. J. Curr. Biol. 8(14), 798–807 (1998)

    Article  Google Scholar 

  24. Kolomeisky, A.B.: Motor proteins and molecular motors: how to operate machines at the nanoscale. J. Phys. Condens. Matter. 25(46), 463101 (2013)

    Article  Google Scholar 

  25. TyleráMcLaughlin, R.: Collective dynamics of processive cytoskeletal motors. J. Soft Matter. 12(1), 14–21 (2016)

    Article  Google Scholar 

  26. Borghi, N., Brochard-Wyart, F.: Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton. Biophys. J. 93(4), 1369–1379 (2007)

    Article  Google Scholar 

  27. Hirokawa, N.: Kinesin and dynein superfamily proteins and the mechanism of organelle transport. J. Sci. 279(5350), 519–526 (1998)

    Google Scholar 

  28. Waugh, R.E.: Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments. Biophys. J. 38(1), 29–37 (1982)

    Article  Google Scholar 

  29. Raucher, D., Sheetz, M.P.: Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77(4), 1992–2002 (1999)

    Article  Google Scholar 

  30. Kremer, S., Campillo, C., Quemeneur, F., Rinaudo, M., Pepin-Donat, B., Brochard-Wyart, F.: Nanotubes from asymmetrically decorated vesicles. J Soft Matter. 7(3), 946–951 (2011)

    Article  Google Scholar 

  31. Brochard-Wyart, F., Borghi, N., Cuvelier, D., Nassoy, P.: Hydrodynamic narrowing of tubes extruded from cells. J Proc. Natl. Acad. Sci. 103(20), 7660–7663 (2006)

    Article  Google Scholar 

  32. Powers, T.R., Huber, G., Goldstein, R.E.: Fluid-membrane tethers: minimal surfaces and elastic boundary layers. J. Phys. Rev. E. 65(4), 041901 (2002)

    Article  Google Scholar 

  33. Derényi, I., Jülicher, F., Prost, J.: Formation and interaction of membrane tubes. J. Phys. Rev. Lett. 88(23), 238101 (2002)

    Article  Google Scholar 

  34. Rossier, O., Cuvelier, D., Borghi, N., Puech, P., Derényi, I., Buguin, A., Nassoy, P., Brochard-Wyart, F.: Giant vesicles under flows: extrusion and retraction of tubes. J. Langmuir. 19(3), 575–584 (2003)

    Article  Google Scholar 

  35. Derényi, I., Koster, G., Van Duijn, M., Czövek, A., Dogterom, M., Prost, J.: Membrane nanotubes, pp. 141–159. Controlled nanoscale motion. Springer, In (2007)

    Google Scholar 

  36. Sanborn, J., Oglęcka, K., Kraut, R.S., Parikh, A.N.: Transient pearling and vesiculation of membrane tubes under osmotic gradients. J. Faraday Discuss. 161, 167–176 (2013)

    Article  Google Scholar 

  37. Sinha, K.P., Gadkari, S., Thaokar, R.M.: Electric field induced pearling instability in cylindrical vesicles. J. Soft Matter. 9(30), 7274–7293 (2013)

    Article  Google Scholar 

  38. Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications, 2nd edn. Wiley (1954)

  39. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn, (1997) Springer Science & Business Media

    Book  Google Scholar 

  40. Drioli, E., Giorno, L.: Comprehensive Membrane Science and Engineering: Basic Aspects in Membrane Preparation and their Transport Phenomena. Elsevier Science (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Karimi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A.H., Rahimi, M., Ziaei-Rad, S. et al. Instability and critical pulling rate of tethers in tether extension process using a mathematical model. Mech Soft Mater 2, 2 (2020). https://doi.org/10.1007/s42558-019-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0015-z

Keywords

Navigation