Skip to main content

Advertisement

Log in

Tungsten disulfide-based nanomaterials for energy conversion and storage

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Energy and environmental issues received widespread attentions due to the fast growth of world population and rapid development of social economy. As a transition metal dichalcogenide, tungsten disulfide (WS2) nanomaterials make important research progress in the field of energy conversion and storage. In view of the versatile and rich microstructure of these materials, the modification and controllable synthesis of WS2 nanomaterials also inspire a research interest. This review mainly focuses on WS2-based nanomaterials in the application of energy conversion and storage as well as discusses some basic characteristics and modification strategies of them. Finally, the research progress of WS2-based nanomaterials is reviewed and some prospects for future research directions are proposed. This review is expected to be beneficial to the future study of WS2 nanomaterials used in the field of energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2015 Elsevier

Fig. 2
Fig. 3

Copyright 2015 ACS

Fig. 4

Copyright 2016 ACS

Fig. 5

Copyright 2013 ACS

Fig. 6

Copyright 2000 ACS

Fig. 7

Copyright 2014 Elsevier

Fig. 8

Copyright 2016 Elsevier

Fig. 9

Copyright 2016 Elsevier

Fig. 10

Copyright 2016 Royal Society of Chemistry (RSC)

Fig. 11

Copyright 2016 WILEY–VCH

Fig. 12

Copyright 2015 RSC

Fig. 13

Copyright 2018 Elsevier

Fig. 14

Copyright 2015 WILEY–VCH

Fig. 15

Copyright 2014 RSC

Fig. 16

Copyright 2016 Elsevier

Similar content being viewed by others

Change history

References

  1. Deng MM, Kwac K, Li M, Jung YS, Park HG. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 2017;17(4):2342.

    Article  CAS  Google Scholar 

  2. Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sust Energy Rev. 2000;4(2):157.

    Article  Google Scholar 

  3. Hu CG, Xiao Y, Zou YQ, Dai LM. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem Energy Rev. 2018;1(1):84.

    Article  CAS  Google Scholar 

  4. Zhong C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang JJ. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev. 2015;44(21):7484.

    Article  CAS  Google Scholar 

  5. Fan XY, Liu XR, Hu WB, Zhong C, Lu J. Advances in the development of power supplies for the Internet of Everything. Info Mat. 2019;1:130.

    Google Scholar 

  6. Li YB, Fu J, Zhong C, Wu TP, Chen ZW, Hu WB, Amine K, Lu J. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 2019;9(1):1802605.

    Article  CAS  Google Scholar 

  7. Wang QF, Yanzhang RP, Ren XN, Zhu H, Zhang M, Du ML. Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. Int J Hydrogen Energy. 2016;41(47):21870.

    Article  CAS  Google Scholar 

  8. Liu H, Su DW, Wang GX, Qiao SZ. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J Mater Chem. 2012;22(34):17437.

    Article  CAS  Google Scholar 

  9. Wang Y, Kong DZ, Shi WH, Liu B, Sim GJ, Ge Q, Yang HY. Ice templated free-standing hierarchically WS2-CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater. 2016;6(21):1601057.

    Article  CAS  Google Scholar 

  10. Tu CC, Lin LY, Xiao BC, Chen YS. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J Power Sources. 2016;320:78.

    Article  CAS  Google Scholar 

  11. Wang Q, Yan J, Fan ZJ. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci. 2016;9(3):729.

    Article  CAS  Google Scholar 

  12. Sun YT, Liu XR, Jiang YM, Li J, Ding J, Hu WB, Zhong C. Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries. J Mater Chem A. 2019;7(31):18183.

    Article  CAS  Google Scholar 

  13. Leong SX, Mayorga-Martinez CC, Chia XY, Luxa J, Sofer Z, Pumera M. 2H → 1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties. ACS Appl Mater Inter. 2017;9(31):26350.

    Article  CAS  Google Scholar 

  14. Yi JJ, She XJ, Song YH, Mao M, Xia KX, Xu YG, Mo Z, Wu JJ, Xu H, Li HM. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem Eng J. 2018;335:282.

    Article  CAS  Google Scholar 

  15. Wen Y, Xia YD, Zhang SW. Tungsten disulphide nanorattle: a new type of high performance electrocatalyst for hydrogen evolution reaction. J Power Sources. 2016;307:593.

    Article  CAS  Google Scholar 

  16. Sang YH, Zhao ZH, Zhao MW, Hao P, Leng YH, Liu H. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv Mater. 2015;27(2):363.

    Article  CAS  Google Scholar 

  17. Zeng XH, Ding ZP, Ma C, Wu LD, Liu JT, Chen LB, Ivey DG, Wei WF. Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Appl Mater Inter. 2016;8(29):18841.

    Article  CAS  Google Scholar 

  18. Schutte WJ, De Boer JL, Jellinek F. Crystal structures of tungsten disulfide and diselenide. J Solid State Chem. 1987;70(2):207.

    Article  CAS  Google Scholar 

  19. Polyakov AY, Zak A, Tenne R, Goodilin EA, Solntsev KA. Nanocomposites based on tubular and onion nanostructures of molybdenum and tungsten disulfides: inorganic design, functional properties and applications. Russ Chem Rev. 2018;87:251.

    Article  CAS  Google Scholar 

  20. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed. 2010;49(24):4059.

    Article  CAS  Google Scholar 

  21. Wang F, Kinloch IA, Wolverson D, Tenne R, Zak A, O'Connell E, Bangert U, Young RJ. Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2D Mater. 2017;4(1):015007.

    Article  CAS  Google Scholar 

  22. Xia DD, Gong F, Pei XD, Wang WB, Li H, Zeng W, Wu MQ, Papavassiliou DV. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review. Chem Eng J. 2018;348:908.

    Article  CAS  Google Scholar 

  23. Golub AS, Zubavichus YV, Slovokhotov YL, Novikov YN. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds. Russ Chem Rev. 2003;72(2):123.

    Article  CAS  Google Scholar 

  24. Li HN, Shi YM, Chiu MH, Li LJ. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy. 2015;18:293.

    Article  CAS  Google Scholar 

  25. Jiang H. Electronic band structures of molybdenum and tungsten dichalcogenides by the GW Approach. J Phys Chem C. 2012;116(14):7664.

    Article  CAS  Google Scholar 

  26. Shepherd FR, Williams PM. Photoemission studies of the band structures of transition metal dichalcogenides. II. Groups VA and VIA. J Phys C. 1974;7(23):4427.

    Article  CAS  Google Scholar 

  27. Klein A, Tiefenbacher S, Eyert V, Pettenkofer C, Jaegermann W. Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions. Phys Rev B. 2001;64(20):205416.

    Article  CAS  Google Scholar 

  28. Aryasetiawan F, Gunnarsson O. The GW method. Rep Prog Phys. 1998;61(3):237.

    Article  CAS  Google Scholar 

  29. Zanolli Z, Fuchs F, Furthmüller J, von Barth U, Bechstedt F. Model GW band structure of InAs and GaAs in the wurtzite phase. Phys Rev B. 2007;75(24):245121.

    Article  CAS  Google Scholar 

  30. Baglio JA, Calabrese GS, Kamieniecki E, Kershaw R, Kubiak CP, Ricco AJ, Wold A, Wrighton MS, Zoski GD. Characterization of n-type semiconducting tungsten disulfide photoanodes in aqueous and nonaqueous electrolyte solutions photooxidation of halides with high efficiency. J Electrochem Soc. 1982;129(7):1461.

    Article  CAS  Google Scholar 

  31. Kam KK, Parkinson BA. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem. 1982;86(4):463.

    Article  CAS  Google Scholar 

  32. Julien C, Yebka B, Porte C. Effects of the lithium intercalation on the optical band edge of WS2. Solid State Ionics. 1998;110(1–2):29.

    Article  CAS  Google Scholar 

  33. Notley SM. High yield production of photoluminescent tungsten disulphide nanoparticles. J Colloid Interf Sci. 2013;396:160.

    Article  CAS  Google Scholar 

  34. Johari P, Shenoy VB. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano. 2012;6(6):5449.

    Article  CAS  Google Scholar 

  35. Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B. 2011;83(24):245213.

    Article  CAS  Google Scholar 

  36. Song JG, Park J, Lee W, Choi T, Jung H, Lee CW, Hwang SH, Myoung JM, Jung JH, Kim SH, Lansalot-Matras C, Kim H. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano. 2013;7(12):11333.

    Article  CAS  Google Scholar 

  37. Ghorai A, Bayan S, Gogurla N, Midya A, Ray SK. Highly luminescent WS2 quantum dots/ZnO heterojunctions for light emitting devices. ACS Appl Mater Inter. 2016;9(1):558.

    Article  CAS  Google Scholar 

  38. Cao SX, Liu TM, Zeng W, Hussain S, Peng XH, Pan FS. Synthesis and characterization of flower-like WS2 nanospheres via a facile hydrothermal route. J Mater Sci-Mater El. 2014;25(10):4300.

    Article  CAS  Google Scholar 

  39. Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T. On the electronic structure of WS2 nanotubes. Solid State Commun. 2000;114(5):245.

    Article  CAS  Google Scholar 

  40. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331(6017):568.

    Article  CAS  Google Scholar 

  41. Cao SX, Liu TM, Hussain S, Zeng W, Pan FS, Peng XH. Synthesis and characterization of novel chrysanthemum-like tungsten disulfide (WS2) nanostructure: structure, growth and optical absorption property. J Mater Sci. 2015;26(2):809.

    CAS  Google Scholar 

  42. Liu Q, Li XL, Xiao ZR, Zhou Y, Chen HP, Khalil A, Xiang T, Xu JQ, Chu WS, Wu XJ, Yang JL, Wang CM, Xiong YJ, Jin CH, Ajayan PM, Song L. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv Mater. 2015;27(33):4837.

    Article  CAS  Google Scholar 

  43. Zhang SF, Dong NN, McEvoy N, O’Brien M, Winters S, Berner NC, Yim CY, Li YX, Zhang XY, Chen ZH, Zhang L, Duesberg GS, Wang J. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano. 2015;9(7):7142.

    Article  CAS  Google Scholar 

  44. Saravanan R, Gracia F, Stephen A. Basic principles, mechanism, and challenges of photocatalysis. In: Khan MM, Pradhan D, Sohn Y, editors. Nanocomposites for visible light-induced photocatalysis. Cham: Springer International Publishing; 2017. p. 19.

    Chapter  Google Scholar 

  45. Best JP, Dunstan DE. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation. Int J Hydrog Energy. 2009;34(18):7562.

    Article  CAS  Google Scholar 

  46. Zong X, Han JF, Ma GJ, Yan HJ, Wu GP, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J Phys Chem C. 2011;115(24):12202.

    Article  CAS  Google Scholar 

  47. Ovchinnikov D, Allain A, Huang YS, Dumcenco D, Kis A. Electrical transport properties of single-layer WS2. ACS Nano. 2014;8(8):8174.

    Article  CAS  Google Scholar 

  48. Jäger-Waldau A, Lux-Steiner MC, Jäger-Waldau G, Bucher E. WS2 thin films prepared by sulphurization. Appl Surf Sci. 1993;70–71(Part 2):731.

    Article  Google Scholar 

  49. Jo SH, Ubrig N, Berger H, Kuzmenko AB, Morpurgo AF. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014;14(4):2019.

    Article  CAS  Google Scholar 

  50. Kopnov F, Yoffe A, Leitus G, Tenne R. Transport properties of fullerene-like WS2 nanoparticles. Phys Status Solidi B. 2006;243(6):1229.

    Article  CAS  Google Scholar 

  51. Zhang CY, Ning ZY, Liu Y, Xu TT, Guo Y, Zak A, Zhang ZY, Wang S, Tenne R, Chen Q. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption. Appl Phys Lett. 2012;101(11):113112.

    Article  CAS  Google Scholar 

  52. Gong M, Wang DY, Chen CC, Hwang BJ, Dai HJ. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2015;9(1):28.

    Article  CAS  Google Scholar 

  53. Tang Q, Jiang DE. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016;6(8):4953.

    Article  CAS  Google Scholar 

  54. Voiry D, Yamaguchi H, Li JW, Silva R, Alves DC, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013;12(9):850.

    Article  CAS  Google Scholar 

  55. Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009;140:219.

    Article  Google Scholar 

  56. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed. 2015;54(1):52.

    Article  CAS  Google Scholar 

  57. Mahler B, Hoepfner V, Liao K, Ozin GA. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc. 2014;136(40):14121.

    Article  CAS  Google Scholar 

  58. Yang D, Frindt RF. Li-intercalation and exfoliation of WS2. J Phys Chem Solids. 1996;57(6–8):1113.

    Article  CAS  Google Scholar 

  59. Ohuchi FS, Jaegermann W, Pettenkofer C, Parkinson BA. Semiconductor to metal transition of WS2 induced by K intercalation in ultrahigh vacuum. Langmuir. 1989;5(2):439.

    Article  CAS  Google Scholar 

  60. Zak A, Feldman Y, Lyakhovitskaya V, Leitus G, Popovitz-Biro R, Wachtel E, Cohen H, Reich S, Tenne R. Alkali metal intercalated fullerene-like MS2 (M=W, Mo) nanoparticles and their properties. J Am Chem Soc. 2002;124(17):4747.

    Article  CAS  Google Scholar 

  61. Bosi M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv. 2015;5(92):75500.

    Article  CAS  Google Scholar 

  62. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340(6139):1226419.

    Article  CAS  Google Scholar 

  63. Hu S, Wang XF, Meng L, Yan XH. Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition. J Mater Sci. 2017;52(10):7215.

    Article  CAS  Google Scholar 

  64. Jin ZY, Shin S, Kwon DH, Han SJ, Min YS. Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale. 2014;6(23):14453.

    Article  CAS  Google Scholar 

  65. Wiesel I, Arbel H, Albu-Yaron A, Popovitz-Biro R, Gordon JM, Feuermann D, Tenne R. Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors. Nano Res. 2010;2(5):416.

    Article  CAS  Google Scholar 

  66. Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 1992;360(6403):444.

    Article  CAS  Google Scholar 

  67. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science. 1995;267(5195):222.

    Article  CAS  Google Scholar 

  68. Feldman Y, Zak A, Popovitz-Biro R, Tenne R. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid State Sci. 2000;2(6):663.

    Article  CAS  Google Scholar 

  69. Margolin A, Rosentsveig R, Albu-Yaron A, Popovitz-Biro R, Tenne R. Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor. J Mater Chem. 2004;14(4):617.

    Article  CAS  Google Scholar 

  70. Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc. 1996;118(23):5362.

    Article  CAS  Google Scholar 

  71. Rothschild A, Sloan J, Tenne R. Growth of WS2 nanotubes phases. J Am Chem Soc. 2000;122(21):5169.

    Article  CAS  Google Scholar 

  72. Nath M, Mukhopadhyay K, Rao CNR. Mo1–xWxS2 nanotubes and related structures. Chem Phys Lett. 2002;352(3–4):163.

    Article  CAS  Google Scholar 

  73. Zhu YQ, Hsu WK, Grobert N, Chang BH, Terrones M, Terrones H, Kroto HW, Walton DR, Wei BQ. Production of WS2 nanotubes. Chem Mater. 2000;12(5):1190.

    Article  CAS  Google Scholar 

  74. Dumcenco DO, Chen KY, Wang YP, Huang YS, Tiong KK. Raman study of 2H-Mo1–xWxS2 layered mixed crystals. J Alloy Compd. 2010;506(2):940.

    Article  CAS  Google Scholar 

  75. Cao SX, Liu TM, Hussain S, Zeng W, Peng XH, Pan FS. Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater Lett. 2014;129:205.

    Article  CAS  Google Scholar 

  76. Sasaki S, Kobayashi Y, Liu Z, Suenaga K, Maniwa Y, Miyauchi Y, Miyata Y. Growth and optical properties of Nb-doped WS2 monolayers. Appl Phys Express. 2016;9(7):071201.

    Article  CAS  Google Scholar 

  77. Tedstone AA, Lewis DJ, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater. 2016;28(7):1965.

    Article  CAS  Google Scholar 

  78. Singh N, Schwingenschlögl U. Extended moment formation in monolayer WS2 doped with 3d transition-metals. ACS Appl Mater Inter. 2016;8(36):23886.

    Article  CAS  Google Scholar 

  79. Onofrio N, Guzman D, Strachan A. Novel doping alternatives for single-layer transition metal dichalcogenides. J Appl Phys. 2017;122(18):185102.

    Article  CAS  Google Scholar 

  80. Zhao X, Xia CX, Wang TX, Peng YT, Dai XQ. Effective p-type N-doped WS2 monolayer. J Alloy Compd. 2015;649:357.

    Article  CAS  Google Scholar 

  81. Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A. 2017;5:18299.

    Article  CAS  Google Scholar 

  82. Gao J, Kim YD, Liang LB, Idrobo JC, Chow P, Tan JW, Li BC, Li L, Sumpter BG, Lu TM, Meunier V, Hone J, Koratkar N. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater. 2016;28(44):9735.

    Article  CAS  Google Scholar 

  83. Murtaza G, Venkateswaran SP, Thomas AG, O'Brien P, Lewis DJ. Chemical vapour deposition of chromium-doped tungsten disulphide thin films on glass and steel substrates from molecular precursors. J Mater Chem C. 2018;6(35):9537.

    Article  CAS  Google Scholar 

  84. Dumcenco DO, Hsu HP, Huang YS, Liang CH, Tiong KK, Du CH. Optical properties of tungsten disulfide single crystals doped with gold. Mater Chem Phys. 2008;111(2–3):475.

    Article  CAS  Google Scholar 

  85. Yu YF, Li GQ, Huang LJ, Barrette A, Cai YQ, Yu YL, Gundogdu K, Zhang YW, Cao LY. Enhancing multifunctionalities of transition-metal dichalcogenide monolayers via cation intercalation. ACS Nano. 2017;11(9):9390.

    Article  CAS  Google Scholar 

  86. Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, Shin HS. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed. 2013;125(51):13751.

    Article  CAS  Google Scholar 

  87. Chen YT, Ren R, Wen ZH, Ci SQ, Chang JB, Mao S, Chen JH. Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy. 2018;47:66.

    Article  CAS  Google Scholar 

  88. Chen RJ, Zhao T, Wu WP, Wu F, Li L, Qian J, Xu R, Wu HM, Albishri HM, Al-Bogami AS, El-Hady DA, Lu J, Amine K. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014;14(10):5899.

    Article  CAS  Google Scholar 

  89. Park J, Lee W, Choi T, Hwang SH, Myoung JM, Jung JH, Kim SH, Kim H. Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale. 2015;7(4):1308.

    Article  CAS  Google Scholar 

  90. Lin JF, Pitkänen O, Mäklin J, Puskas R, Kukovecz A, Dombovari A, Toth G, Kordas K. Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2015;3(28):14609.

    Article  CAS  Google Scholar 

  91. Yue GT, Wu JH, Lin JY, Xiao YM, Tai SY, Lin JM, Huang ML, Lan Z. A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon. 2013;55:1.

    Article  CAS  Google Scholar 

  92. Ren J, Wang Z, Yang F, Ren RP, Lv YK. Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries. Electrochim Acta. 2018;267:133.

    Article  CAS  Google Scholar 

  93. Liu Y, Wang W, Wang YW, Peng XS. Synergistic performance of porous laminated tungsten disulfide/copper oxide/single-wall carbon nanotubes hybrids for lithium ions batteries. Electrochim Acta. 2014;148:73.

    Article  CAS  Google Scholar 

  94. Huang JF, Wang X, Li JY, Cao LY, Xu ZW, Wei H. WS2-Super P nanocomposites anode material with enhanced cycling stability for lithium ion batteries. J Alloy Compd. 2016;673:60.

    Article  CAS  Google Scholar 

  95. Li JM, Shi XD, Fang J, Li J, Zhang ZA. Facile synthesis of WS2 nanosheets–carbon composites anodes for sodium and lithium ion batteries. Chem Nano Mat. 2016;2(10):997.

    CAS  Google Scholar 

  96. Wu ZZ, Fang BZ, Bonakdarpour A, Sun A, Wilkinson DP, Wang DZ. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl Catal B. 2012;125:59.

    Article  CAS  Google Scholar 

  97. Zou ML, Jiang Y, Wan M, Zhang M, Zhu H, Yang TT, Du ML. Controlled morphology evolution of electrospun carbon nanofiber templated tungsten disulfide nanostructures. Electrochim Acta. 2015;176:255.

    Article  CAS  Google Scholar 

  98. Sun CQ, Zhang JY, Ma J, Liu PT, Gao DQ, Tao K, Xue DS. N-doped WS2 nanosheets: a high-performance electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2016;4(29):11234.

    Article  CAS  Google Scholar 

  99. Wang FM, He P, Li YC, Shifa TA, Deng Y, Liu KL, Wang QS, Wang F, Wen Y, Wang ZX, Zhan XY, Sun LF, He J. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis. Adv Funct Mater. 2017;27(7):1605802.

    Article  CAS  Google Scholar 

  100. Ansari MZ, Ansari SA, Parveen N, Cho MH, Song T. Lithium ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets. New J Chem. 2018;42(8):5859.

    Article  CAS  Google Scholar 

  101. Di Paola A, Palmisano L, Augugliaro V. Photocatalytic behavior of mixed WO3/WS2 powders. Catal Today. 2000;58(2–3):141.

    Article  Google Scholar 

  102. Vattikuti SVP, Shome S, Koyyada G, Shim J, Jung JH. Fabrication of highly efficient carbon coated exfoliated tungsten disulfide nanosheets core-shell nanostructure as a promising solar-light driven photocatalyst. Mater Res Bull. 2018;107:446.

    Article  CAS  Google Scholar 

  103. Chen CS, Yu WW, Liu TG, Cao SY, Tsang Y. Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Sol Energ Mater Sol C. 2017;160:43.

    Article  CAS  Google Scholar 

  104. Xiang QJ, Cheng FY, Lang D. Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. Chemsuschem. 2016;9(9):996.

    Article  CAS  Google Scholar 

  105. Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010;195(9):2419.

    Article  CAS  Google Scholar 

  106. Li F, Liu QH, Hu JW, Feng YZ, He PB, Ma JM. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418.

    Article  CAS  Google Scholar 

  107. Wu MG, Ni W, Hu J, Ma JM. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 2019;11:44.

    Article  CAS  Google Scholar 

  108. Feng CQ, Huang LF, Guo ZP, Liu HK. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem Commun. 2007;9(1):119.

    Article  CAS  Google Scholar 

  109. Wang GX, Bewlay S, Yao J, Liu HK, Dou SX. Tungsten disulfide nanotubes for lithium storage. Electrochem Solid St. 2004;7(10):A321.

    Article  CAS  Google Scholar 

  110. Li HL, Yu K, Fu H, Guo BJ, Lei X, Zhu ZQ. Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation. Phys Chem Chem Phys. 2015;17(44):29824.

    Article  CAS  Google Scholar 

  111. Ding YL, Cano ZP, Yu AP, Lu J, Chen ZW. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev. 2019;2:1.

    Article  CAS  Google Scholar 

  112. Kartick B, Srivastava SK, Mahanty S. Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium-ion battery. J Nanosci Nanotechnol. 2014;14(5):3758.

    Article  CAS  Google Scholar 

  113. Xu BL, Qi SH, He PB, Ma JM. Antimony and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.

    Article  CAS  Google Scholar 

  114. Xie X, Mao ML, Qi SH, Ma JM. ReS2-based electrode materials for alkali-metal ion batteries. Cryst Eng Comm. 2019;21(25):3755.

    Article  CAS  Google Scholar 

  115. Wang L, Xie X, Dinh KN, Yan QY, Ma JM. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordin Chem Rev. 2019;397:138.

    Article  CAS  Google Scholar 

  116. Fang YJ, Xiao LF, Chen ZX, Ai XP, Cao YL, Yang HX. Recent advances in sodium-ion battery materials. Electrochem Energy Rev. 2018;1:294.

    Article  CAS  Google Scholar 

  117. Liu YC, Zhang N, Kang HY, Shang MH, Jiao LF, Chen J. WS2 Nanowires as a high-performance anode for sodium-ion batteries. Chem-Eur J. 2015;21(33):11878.

    Article  CAS  Google Scholar 

  118. Wang X, Huang JF, Li JY, Cao LY, Hao W, Xu ZW, Kang Q. (002)-oriented WS2 with high crystalline with enhanced capacity as anode material for sodium ion batteries. J Alloy Compd. 2017;696:22.

    Article  CAS  Google Scholar 

  119. Su DW, Dou SX, Wang GX. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem Commun. 2014;50(32):4192.

    Article  CAS  Google Scholar 

  120. Kong DB, Qiu XY, Wang B, Xiao ZC, Zhang XH, Guo RY, Gao Y, Yang QH, Zhi LJ. WS2 nanoplates embedded in graphitic carbon nanotubes with excellent electrochemical performance for lithium and sodium storage. Sci China Mater. 2018;61:671.

    Article  CAS  Google Scholar 

  121. Wee HM, Yang WH, Chou CW, Padilan MV. Renewable energy supply chains, performance, application barriers, and strategies for further development. Renew Sust Energ Rev. 2012;16(8):5451.

    Article  Google Scholar 

  122. Jang JH, Han SJ, Hyeon T, Oh SM. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources. 2003;123(1):79.

    Article  CAS  Google Scholar 

  123. Mayorga-Martinez CC, Ambrosi A, Eng AYS, Sofer Z, Pumera M. Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem Commun. 2015;56:24.

    Article  CAS  Google Scholar 

  124. Nagaraju C, Gopi CVVM, Ahn JW, Kim HJ. Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high performance supercapacitor applications. New J Chem. 2018;42(15):12357.

    Article  CAS  Google Scholar 

  125. Ratha S, Rout CS. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Inter. 2013;5(21):11427.

    Article  CAS  Google Scholar 

  126. Qiu XM, Wang LN, Fan LZ. Immobilization of tungsten disulfide nanosheets on active carbon fibers as electrode materials for high performance quasi-solid-state asymmetric supercapacitors. J Mater Chem A. 2018;6(17):7835.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation for Excellent Young Scholar (Grant No. 51722403), Tianjin Natural Science Foundation (Grant No. 18JCJQJC46500), National Natural Science Foundation of China and Guangdong Province (Grant No. U1601216), and the National Youth Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, CB., Zhong, YW., Fu, WJ. et al. Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten 2, 109–133 (2020). https://doi.org/10.1007/s42864-020-00038-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00038-6

Keywords

Navigation