Skip to main content
Log in

Wear behavior and mechanism of a sliding pair of 0. 1C-3Cr-2W-V nitrided steel rubbing against an aluminum bronze alloy

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Wear behavior and mechanism of plasma nitrided steel oscillating against a heat-treated and an untreated aluminum bronze alloy were investigated using an Optimol SRV tribometer. The influence of heat treatment on the mechanical properties of the alloy was evaluated. Furthermore, the wear debris was also examined to understand the wear mechanisms. The results show that a 220—230 μm nitrided layer, which was harder than the substrate, was obtained on the steel surface. The tensile strength and hardness of the alloy are found to be significantly improved by the heat treatment associated with low impact toughness. The heat treatment of the alloy did not obviously decrease the friction coefficient of the nitrided steel-bronze couple. However, the wear loss of the nitrided steel increased when it mated with the treated bronze by a severe three-body abrasion. The nitrided steel was mainly damaged by fatigue spalling. Under plane contact conditions, the wear debris was mainly generated from the bronze part and can escape from the interface before being oxidized, leading to the phase structure of all the debris being copper rather than copper oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hintikka, A. Lehtovaara, A. Mäntylä, Wear 308 (2013) 155–165.

    Article  Google Scholar 

  2. B. K. Prasad, S. Rathod, O. P. Modi, M.S. Yadav, Wear 269 (2010) 498–505.

    Article  Google Scholar 

  3. V. Fontanari, M. Benedetti, G. Straffelini, C. Girardi, L. Giordanino, Wear 302 (2013) 1520–1527.

    Article  Google Scholar 

  4. T. Sheiretov, W. V. Glabbeek, C. Cusano, Int. J. Refrig. 18 (1995) 330–335.

    Article  Google Scholar 

  5. T. A. Blanchet, S. J. Shaffer, A. Ghristiaen, J. M. Kolly, Wear 255 (2003) 1238–1250.

    Article  Google Scholar 

  6. G. J. Cui, Q. L. Bi, S. Y. Zhu, J. Yang, W. M. Liu, Tribol. Int. 55 (2012) 126–134.

    Article  Google Scholar 

  7. W. Poole, J. L. Sullivan, ASLE T. 22 (1979) 154–161.

    Article  Google Scholar 

  8. B. K. Prasad, Wear 257 (2004) 110–123.

    Article  Google Scholar 

  9. Y. Y. Li, T. L. Ngai, W. Xia, Y. Long, D. T. Zhang, J. Mater. Process. Technol. 138 (2003) 479–483.

    Article  Google Scholar 

  10. S. Alam, R. I. Marshall, S. Sasaki, Tribol. Int. 29 (1996) 487–492.

    Article  Google Scholar 

  11. Y. Y. Li, T. L. Ngai, W. Xia, Wear 197 (1996) 130–136.

    Article  Google Scholar 

  12. E. Heide, E. D. Stam, H. Giraud, G. Lovato, N. Akdut, F. Clarysse, P. Caenen, I. Heikillä, Wear 261 (2006) 68–73.

    Article  Google Scholar 

  13. Z. Shi, Y. Sun, A. Bloyce, T. Bell, Wear 193 (1996) 235–241.

    Article  Google Scholar 

  14. Z. Shi, A. Bloyce, Y. Sun, T. Bell, Wear 198 (1996) 300–306.

    Article  Google Scholar 

  15. S. N. Ghali, M. M. Eissa, M. L. Mishreky, J. Iron Steel Res. Int. 20 (2013) No. 1, 58–61.

    Article  Google Scholar 

  16. Z. J. Zhang, S. C. Xu, P. Y. Zhao, J. Iron Steel Res. Int. 15 (2008) No. 1, 85–88.

    Article  Google Scholar 

  17. Y. Q. Xia, F. Zhou, S. Sasaki, T. Murakami, M. H. Yao, Wear 268 (2010) 917–923.

    Article  Google Scholar 

  18. Y. H. Yang, M. Q. Wang, J. C. Chen, H. Dong, J. Iron Steel Res. Int. 20 (2013) No. 12, 140–145.

    Article  Google Scholar 

  19. Y. Q. Xia, Sh. J. Wang, F. Zhou, H. Z. Wang, Y. M. Lin, T. Xu, Tribol. Int. 39 (2006) 635–640.

    Article  Google Scholar 

  20. R. Kumar, J. Alphonsa, R. Prakash, K. S. Boob, J. Ghanshyam, P. A. Rayjada, P. M. Raole, S. Mukherjee, Indian A. Sci. 34 (2011) 153–159.

    Google Scholar 

  21. A. B. Sengül, A. Çelik, J. Iron Steel Res. Int. 21 (2014) No. 8, 797–803.

    Article  Google Scholar 

  22. X. L. Li, W. Yue, Gh. B. Wang, X. G. Gao, S. Wang, J. J. Liu, Tribol. Int. 51 (2012) 47–53.

    Article  Google Scholar 

  23. W. Gai, F. N. Meng, X. Y. Gao, J. Hu, Appl. Surf. Sci. 261 (2012) 411–414.

    Article  Google Scholar 

  24. S. Y. Sirin, K. Sirin, E. Kalu, Mater. Sci. Eng. A 564 (2013) 232–241.

    Article  Google Scholar 

  25. M. A. Terres, H. Sidhom, Mater. Des. 33 (2012) 444–450.

    Article  Google Scholar 

  26. M. F. Yan, G. S. Zhang, Z. Sun, Appl. Surf. Sci. 289 (2014) 370–377.

    Article  Google Scholar 

  27. T. Akagaki, D. A. Rigney, Wear 149 (1991) 353–374.

    Article  Google Scholar 

  28. J. B. Singh, W. Cai, P. Bellon, Wear 263 (2007) 830–841.

    Article  Google Scholar 

  29. R. A. Poggie, J. J. Wert, L. Harris, J. Adhes. Sci. Technol. 8 (1994) 11–28.

    Article  Google Scholar 

  30. J. H. Ouyang, S. Sasaki, Surf. Coat. Tech. 187 (2004) 343–357.

    Article  Google Scholar 

  31. J. Yang, P. Q. La, W. M. Liu, Q. J. Xue, Wear 257 (2004) 104–109.

    Article  Google Scholar 

  32. A. Alsaran, Mater. Gharact. 49 (2003) 171–176.

    Article  Google Scholar 

  33. M. Varenberg, G. Halperin, I. Etsion, Wear 252 (2002) 902–910.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gh., Qu, Sg., Xiong, Zh. et al. Wear behavior and mechanism of a sliding pair of 0. 1C-3Cr-2W-V nitrided steel rubbing against an aluminum bronze alloy. J. Iron Steel Res. Int. 23, 281–288 (2016). https://doi.org/10.1016/S1006-706X(16)30046-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30046-2

Key words

Navigation