Skip to main content
Log in

Influence of initial surface condition of lithium metal anodes on surface modification with HF

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface modification of as-received lithium foils was carried out using acid-base reactions of the native surface films on lithium metal with HF. Two types of as-received lithium foils covered with different native films were used as samples for this surface modification. One was a lithium foil having a very thin native surface film and the other one had a thicker native surface film. The surface condition of the lithium metal was analysed by X-ray photoelectron spectroscopy before and after the surface modification using HF, and the coulombic efficiency was measured electrochemically. The thickness of the surface film on the modified lithium foils was related to the Li2O layer thickness in the native film on the as-received lithium foils. The modified lithium foil which had the thinner native surface film provided more uniform deposition of lithium and a higher coulombic efficiency during charge and discharge cycles when propylene carbonate electrolyte with 1.0 m LiPF6 was used as the electrolyte. These results show that the initial condition of the native surface film plays an important role in surface modification with HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Gabano, in J.P. Gabano (ed.) Lithium Batteries, Academic Press, London, 1983, chapter 2.

    Google Scholar 

  2. V.R. Koch, J. Power Sources 6 (1981) 357.

    Google Scholar 

  3. I. Yoshimatsu, T. Harai and J. Yamaki, J. Electrochem. Soc. 135 (1988) 2422.

    Google Scholar 

  4. M. Arakawa, S. Tobishima, Y. Nemoto, M. Ichimura and J. Yamaki, J. Power Sources 43–44 (1993) 27–35.

    Google Scholar 

  5. R. Selim and P. Bro, J. Electrochem. Soc. 121 (1974) 1457.

    Google Scholar 

  6. E. Peled, J. Electrochem. Soc. 126 (1979) 2047.

    Google Scholar 

  7. D. Aurbach, M.L. Daroux, P.W. Faguy and E. Yeager, J. Elec-trochem. Soc. 134 (1987) 1611.

    Google Scholar 

  8. D. Aurbach and O. Chusid, J. Electrochem. Soc. 140 (1993) L1.

    Google Scholar 

  9. D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Zinigrad and B. Markovsky, J. Electrochem. Soc. 142 (1995) 2873.

    Google Scholar 

  10. D. Aurbach and E. Granot, Electrochim. Acta 42 (1997) 697.

    Google Scholar 

  11. M. Odziemkowski, M. Krell and D.E. Irish, J. Electrochem. Soc. 139 (1992) 3052.

    Google Scholar 

  12. K. Wang, G.S. Chottiner and D.A. Scherson, J. Phys. Chem. 97 (1993) 11075.

    Google Scholar 

  13. K. Wang, P.N. Ross, Jr., F. Kong and F. McLarnon, J. Electro-chem. Soc. 143 (1996) 422.

    Google Scholar 

  14. S.P.S. Yen, D. Shen, R.P. Vasquez, F.J. Grunthaner and R.B. Somoano, J. Electrochem. Soc. 128 (1981) 1434.

    Google Scholar 

  15. K.R. Zavadil and N.R. Armstrong, Surfa. Sci. 230 (1990) 47.

    Google Scholar 

  16. K. Kanamura, H. Tamura and Z. Takehara, J. Electroanal. Chem. 333 (1992) 127.

    Google Scholar 

  17. K. Kanamura, S. Shiraishi, H. Tamura and Z. Takehara, J. Electrochem. Soc. 141 (1994) 2379.

    Google Scholar 

  18. K. Kanamura, H. Tamura, S. Shiraishi and Z. Takehara, J. Electroanal. Chem. 394 (1995) 49.

    Google Scholar 

  19. K. Kanamura, H. Tamura, S. Shiraishi and Z. Takehara, Electrochim. Acta 40 (1995) 913.

    Google Scholar 

  20. D. Aurbach, I. Weissman, A. Schechter and H. Cohen, Langmuir, 12 (1996) 3991.

  21. K. Naoi, M. Mori and Y. Shinagawa, J. Electrochem. Soc. 143 (1996) 2517.

    Google Scholar 

  22. M. Ishikawa, S. Yoshitake, M. Morita and Y. Matsuda, J. Electro-chem. Soc. 141 (1994) L159.

    Google Scholar 

  23. N. Koura, S. Tamura and M. Yoshitake, Denki Kagaku, 63 (1995) 623.

    Google Scholar 

  24. D. Aurbach and Y. Cohen, J. Electrochem. Soc. 143 (1997) 3525.

    Google Scholar 

  25. Y. Geronov, F. Schwager and R.H. Muller, J. Electrochem. Soc. 129 (1982) 1422.

    Google Scholar 

  26. J.G. Thevenin and R.H. Muller, J. Electrochem. Soc. 134 (1987) 273.

    Google Scholar 

  27. D. Aurbach and A. Zaban, J. Electroanal. Chem. 348 (1993) 155.

    Google Scholar 

  28. M. Odziemkowski and D.E. Irish, J. Electrochem. Soc. 140 (1993) 1546.

    Google Scholar 

  29. D. Pletcher, J.F. Rohan and A.G. Ritchie, Electrochim. Acta 39 (1994) 2015.

    Google Scholar 

  30. D. Aurbach, Y. Gofer, M. Ben-Zion and P. Aped, J. Electroanal. Chem. 339 (1992) 451.

    Google Scholar 

  31. T. Osaka, T. Momma, T. Tajima and Y. Matsumoto, J. Electro-chem. Soc. 142 (1995) 1057.

    Google Scholar 

  32. K.M. Abraham, J.S. Foos and J.L. Goldman, J. Electrochem. Soc. 131 (1984) 2197.

    Google Scholar 

  33. M. Morita, S. Aoki and Y. Matsuda, Electrochim. Acta 37 (1992) 119.

    Google Scholar 

  34. H. Nakamura, C. Wang, E. Mitani, T. Fujita and M. Yoshio, J. Surf. Finish. Soc. Jpn. 46 (1995) 1187.

    Google Scholar 

  35. T. Hirai, I. Yoshimatsu and J. Yamaki, J. Electrochem. Soc. 141 (1994) 2300.

    Google Scholar 

  36. A.T. Ribes, P. Beaunier, P. Willmann and D. Lemordant, J. Power Sources 58 (1996) 189.

    Google Scholar 

  37. K. Kanamura, S. Shiraishi and Z. Takehara, J. Electrochem. Soc. 141 (1994) L108.

    Google Scholar 

  38. K. Kanamura, S. Shiraishi and Z. Takehara, J. Electrochem. Soc. 143 (1996) 2187.

    Google Scholar 

  39. S. Shiraishi, K. Kanamura and Z. Takehara, J. Appl Electrochem. 25 (1995) 584.

    Google Scholar 

  40. T. Fujieda, N. Yamamoto, K. Saito, T. Ishibashi, M. Honjo, S. Koike, N. Wakabayashi and S. Higuchi, J. Power Sources 52 (1994) 197.

    Google Scholar 

  41. T. Osaka, T. Momma, K. Nishimura and T. Tajima, J. Electro-chem. Soc. 140 (1993) 2745.

    Google Scholar 

  42. D. Fauteux and R. Koksbang, J. Applied. Electrochem. 23 (1993) 1.

    Google Scholar 

  43. K. Kanamura, S. Shiraishi, H. Takezawa and Z. Takehara, Chem. Mater. 9 (1997) 1797.

    Google Scholar 

  44. K. Kanamura, H. Takezawa, S. Shiraishi and Z. Takehara, J. Electrochem. Soc. 144 (1997) 1900.

    Google Scholar 

  45. D.W.A. Sharp, in M. Stacey, J.C. Tatlow and A.G. Sharpe (ed.), Advances in Fluorine Chemistry, vol. 1, Butterworths, London, 1960, p. 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraishi, S., Kanamura, K. & Takehara, ZI. Influence of initial surface condition of lithium metal anodes on surface modification with HF. Journal of Applied Electrochemistry 29, 867–879 (1999). https://doi.org/10.1023/A:1003565229172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003565229172

Navigation