Skip to main content
Log in

Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake – implications for food web management

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The water quality and seasonal dynamics of phytoplankton and zooplankton in Lake Hiidenvesi were explored in order to evaluate the possibilites to improve the water quality by mass removal of fish. The four sampling stations were situated in basins representing a transition from hypertrophy to mesotrophy and maximum depths from 3 m to 33 m. The maximal phytoplankton biomasses ranged from 5 to 33 mg l-1 and the maximal zooplankton biomasses from 160 to 520 μg C l-1. Cyanophytes dominated the phytoplankton biomass in summer and the copepod biomass was higher than that of cladocerans at all the stations. No spring peak in the zooplankton biomass occurred and the average size of daphnids was below 1 mm. At present, the top-down control of phytoplankton biomass is thus ineffective. However, the water quality and morphometry of L. Hiidenvesi seem favourable for biomanipulation. The nutrient concentrations and external loading fall in the limits that facilitate successful restoration and the morphometry of the lake is favourable for the recolonization by submerged macrophytes. However, since stations 2 and 3 receive their nutrient loading mainly from station 1, restoration of station 1 may be crucial for the whole lake. This may not be achieved through food web management alone, but requires a reduction of the nutrient flow from River Vihtijoki.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benndorf, J., 1987. Food web manipulation without nutrient control, a useful strategy in lake restoration? Schweiz Z. Hydrol. 49: 237-248.

    Google Scholar 

  • Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. ges. Hydrobiol. 80: 519-534.

    Google Scholar 

  • Boers, P., L. Van Ballengooijen, & J. Uunk, 1991. Changes in phosphorus cycling in a shallow lake due to food web manipulations. Freshwat. Biol. 25: 9-20.

    Google Scholar 

  • Bosselmann, S. & B. Riemann, 1986. Zooplankton. In Riemann, B. & M. Søndergaard (eds), Carbon Dynamics of Eutrophic, Temperate Lakes. Elsevier Science Publishers, Amsterdam: 199-235.

    Google Scholar 

  • Branstrator, D. K. & J. T. Lehman, 1991. Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris by Leptodora kindti. Limnol Oceanogr. 36: 483-495.

    Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnol. Oceanogr. 14: 693-700.

    Google Scholar 

  • Chambers, P. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. aquat. Sci. 42(4): 701-709.

    Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 43-47.

    Google Scholar 

  • De Bernardi, R. & G. Giussiani, 1990. Are blue-green algae suitable food for zooplankton? An overview. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 29-41.

    Google Scholar 

  • DeMott, W., Q-X. Zhang, & W. Carmichael, 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36(7): 1346-1357.

    Google Scholar 

  • Dorazio, R. M., J. A. Bowers, & J. T. Lehman, 1987. Food-web manipulations influence grazer control of phytoplankton growth rates in Lake Michigan. J. Plankton Res. 9: 891-899.

    Google Scholar 

  • Edler, L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. The Baltic Marine Biologists Publication 5: 1-38.

    Google Scholar 

  • Fulton, R., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263-271.

    Google Scholar 

  • Gelin, C., 1975. Nutrients, biomass and primary productivity of nanoplankton in a eutrophic lake. Oikos 22: 230-234.

    Google Scholar 

  • Gelin, C. & G. Ripl, 1978. Nutrient decrease and response of various phytoplankton size fractions following the restoration of Lake Trummen, Sweden. Arch. Hydrobiol. 81: 339-367.

    Google Scholar 

  • Gliwicz, Z. M., 1985. Predation or food limitation, an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419-430.

    Google Scholar 

  • Gliwicz, Z. M., A. Ghilarov, & J. Pijanowska, 1981. Food and predation as major factors limiting two natural populations of Daphnia cucullata Sars. Hydrobiologia 80: 205-218.

    Google Scholar 

  • Hakkari, L., 1978. On the productivity and ecology of zooplankton and its role as food of fish in some lakes in Central Finland. Biol. Res. Rep. Univ. Jyväskylä 4: 1-87.

    Google Scholar 

  • Hamrin, S. F., 1993. Lake restoration by cyprinid control in Sätofta bay (Lake Ringsjön). Verh. int. Ver. Limnol. 25: 487-493.

    Google Scholar 

  • Harjula, H., 1970. Hiidenveden rehevöitymisen kehitys vertailevan pohjasedimenttitutkimuksen valossa. M. Sc. thesis. University of Helsinki, Department of Limnology. [A comparative sediment study on the eutrophication history of Lake Hiidenvesi. in Finnish)].

  • Harris, G. P., 1986. Phytoplankton ecology. Chapman and Hall, London, New York.

    Google Scholar 

  • Heinonen, P., 1980. Quantity and composition of phytoplankton in Finnish inland waters. Vesientutkimuslaitoksen julkaisuja, 37. Vesihallitus, Helsinki: 91 pp. (in Finnish).

    Google Scholar 

  • Herzig, A., 1995. Leptodora kindti: efficient predator and preferred prey item in Neusiedler See, Austria. Hydrobiologia 307: 273-282.

    Google Scholar 

  • Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen, & T. Kairesalo, 1998. Top-down or bottom-up effects by fish - issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20-28.

    Google Scholar 

  • Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 523-534.

    Google Scholar 

  • Hrbácek, J., M. Dvorakova, V. Korínek, V. & L. Procházkóva, 1961. Demonstration of the effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192-195.

    Google Scholar 

  • James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a northtemperate lake. Arch. Hydrobiol. 120: 129-142.

    Google Scholar 

  • Jensen, J., E. Jeppesen, K. Olrik, & P. Kristensen, 1994. Impact of nutrient and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. aquat. Sci. 51: 1692-1699

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, J. P. Jensen, E. Mortensen, O. Sortkjær & K. Olrik, K. 1990. Fish manipulation as a restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 219-227.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. Eriksen, M. Hammershøj, E. Mortensen, J. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276 (Dev. Hydrobiol. 94): 15-30.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & L. Lauridsen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 151-164.

    Google Scholar 

  • Jungmann, D., 1992. Toxic compounds isolated from Microcystis PCC7806 that are more active against Daphnia than two microcystins. Limnol. Oceanogr. 37(8): 1777-1783.

    Google Scholar 

  • Jungmann, D. & J. Benndorf, 1994. Toxicity to Daphnia of a compound extracted from laboratory and natural Microcystis spp. and the role of microcystins. Freshwater Biology 32: 13-20.

    Google Scholar 

  • Karabin, A., 1974. Studies on the predatory role of the cladoceran Leptodora kindti (Focke) in secondary production of two lakes with different trophy. Ekol. pol. 22: 295-310.

    Google Scholar 

  • Karabin, A., 1986. Pelagic zooplankton (rotatoria + crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekol. pol. 33: 567-616.

    Google Scholar 

  • Keto, J. & I. Sammalkorpi, 1988. A fading recovery; a conceptual model for lake Vesijärvi management and research. Aqua Fenn. 18: 193-204.

    Google Scholar 

  • Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Int. Rev. ges. Hydrobiol. 66: 258-298.

    Google Scholar 

  • Lampert, W., 1988. The relationship between zooplankton biomass and grazing: A review. Limnologica (Berlin) 19: 11-20.

    Google Scholar 

  • Lampert, W., W. Fleckner, R. Hakumat, & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton, a study on the spring clear water phase. Limnol. Oceanogr. 31: 478-490.

    Google Scholar 

  • Leach, J. H.. M. G. Johnson, J. R. M. Kelso, J. Hartmann, W. Nümann, & B. Entz, 1977. Responses of percid fishes and their habitats to eutrophication. J. Fish. Res. Bd. Can. 34: 1670-1677.

    Google Scholar 

  • Luokkanen, E., 1995. Vesikirppuyhteisön lajisto, biomassa ja tuotanto Vesijärven Enonselällä. Helsingin yliopiston Lahden tutkimus-ja koulutuskeskuksen raportteja ja selvityksiä 25: 1-53 (the species composition, biomass and production of the clado94 ceran community in the Enonselkä basin of Lake Vesijärvi. In Finnish with English summary).

    Google Scholar 

  • Matveev, V. & L. Matveeva, 1997. Grazer control and nutrient limitation of phytoplankton biomass in two Australian reservoirs. Freshwat. Biol. 38: 49-65.

    Google Scholar 

  • Mazumder, A., 1994. Phosphorus.chlorophyll relationships under contrasting herbivory and thermal stratification, predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390-400.

    Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell: 228-265.

  • McQueen, D. J., 1990. Manipulating lake community structure: where do we go from here? Freshwat. Biol. 23: 613-620.

    Google Scholar 

  • McQueen, D. J. & J. R. Post, 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 277-296.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plants are important components. Hydrobiologia 200/201 (Dev. Hydrobiol. 52): 367-377.

    Google Scholar 

  • Mäemets, A., 1983. Rotifers as indicators of lake types in Estonia. Hydrobiologia 104: 357-361.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can.J. Fish. aquat. Sci. 41: 1089-1096.

    Google Scholar 

  • Pauli, H.-R., 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186/187 (Dev. Hydrobiol. 52): 355-361.

    Google Scholar 

  • Perrow, M. R., M.-L. Meijer, P. Dawidowicz, & H. Coops, 1997. Biomanipulation in shallow lakes, state of the art. Hydrobiologia 342/343: 355-365.

    Google Scholar 

  • Persson, L., S. Diehl, L. Johansson, G. Andersson, & S. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes - patterns and the importance of size-structured interactions. J. Fish Biol. 38: 281-293.

    Google Scholar 

  • Petersen, F., 1983. Population dynamics and production by Daphnia galeata (Crustacea, Cladocera) in Lake Esrom. Holarct. Ecol. 6: 285-294.

    Google Scholar 

  • Prepas E., 1978. Sugar-frosted Daphnia, an improved fixation technique for Cladocera. Limnol. Oceanogr. 23: 557-559.

    Google Scholar 

  • Ranta, E. & O. Jokinen, 1998. Hiidenveden ja eräiden siihen laskevien vesistönosien yhteistarkkailun yhteenveto vuodelta 1997. Julkaisu 81, Länsi-Uudenmaan Vesi-ja Ympäristö Ry. [Monitoring report on Lake Hiidenvesi and adjacent waterbodies in 1997. In Finnish.].

  • Rawdan, S., 1976. Planktonic rotifers as indicators of lake trophy. Ann. Univ. M. Curie-Sklodowska Lublin 31: 227-235.

    Google Scholar 

  • Reynolds, C. S., 1994. The ecological basis for the succcessful biomanipulation of aquatic communities. Arch. Hydrobiol. 139: 1-33.

    Google Scholar 

  • Rognerud, S. & G. Kjellberg, 1984. Relationships between phytoplankton and zooplankton biomass in large lakes. Verh. int. Ver. Limnol. 22: 666-671.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71-76.

    Google Scholar 

  • Salonen, K. & J. Sarvala, 1985. Combination of freezing and aldehyde fixation. A superior method for biomass determination of aquatic invertebrates. Arch. Hydrobiol. 103: 217-230.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations/coordination. St. Augustin, Academia-Verl. Richarz.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss, & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275-279.

    Google Scholar 

  • Schriver, P., E. Bøgestrand, Jeppesen, & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplanktonphytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255-270.

    Google Scholar 

  • Shapiro, J., 1995. Lake restoration by biomanipulation - a personal view. Environ. Rev. 3: 83-93.

    Google Scholar 

  • Shapiro, J., Lamarra V. & M. Lynch., 1975. Biomanipulation, an ecosystem approach to lake restoration. In Brezonit, P. L. & J. L. Fox (eds), Water Quality Management through Biological Control. University of Florida, Gainesville: 85-96.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert, & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.

    Google Scholar 

  • Takamura, N., A. Otsuki, M. Aizaki & Y. Nojiri, 1992. Phytoplankton species shift accompanied by a transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch. Hydrobiol. 124: 129-148.

    Google Scholar 

  • Timms, R. M. & B. Moss., 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472-486.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1-38.

    Google Scholar 

  • Van Donk E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in Lake Zwemlust, positive and negative effects during the first years. Hydrobiological Bulletin 23: 19-34.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr. 23: 1238-1245.

    Google Scholar 

  • Vincent, W., 1989. Cyanobacterial growth and dominance in two eutrophic lakes - review and synthesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 32: 239-254.

    Google Scholar 

  • Winfield, I. J., G. Peirson, M. Cryer, & C. R. Townsend, 1983. The behavioral basis of prey selection by underyearling bream (Abramis brama (L.)) and roach (Rutilus rutilus (L.)). Freshwat. Biol. 13: 139-149.

    Google Scholar 

  • Wright, D. I. & J. Shapiro, 1984. Nutrient reduction by biomanipulation. An unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: 518-524.

    Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. Yale University Press. New Haven and London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallberg, P., Horppila, J., Väisänen, A. et al. Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake – implications for food web management. Hydrobiologia 412, 81–94 (1999). https://doi.org/10.1023/A:1003804417036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003804417036

Navigation