Skip to main content
Log in

Interpolation and Amalgamation; Pushing the Limits. Part I

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Continuing work initiated by Jónsson, Daigneault, Pigozzi and others; Maksimova proved that a normal modal logic (with a single unary modality) has the Craig interpolation property iff the corresponding class of algebras has the superamalgamation property (cf. [Mak 91], [Mak 79]). The aim of this paper is to extend the latter result to a large class of logics. We will prove that the characterization can be extended to all algebraizable logics containing Boolean fragment and having a certain kind of local deduction property. We also extend this characterization of the interpolation property to arbitrary logics under the condition that their algebraic counterparts are discriminator varieties. We also extend Maksimova's result to normal multi-modal logics with arbitrarily many, not necessarily unary modalities, and to not necessarily normal multi-modal logics with modalities of ranks smaller than 2, too.

The problem of extending the above characterization result to no n-normal non-unary modal logics remains open.

Related issues of universal algebra and of algebraic logic are discussed, too. In particular we investigate the possibility of extending the characterization of interpolability to arbitrary algebraizable logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. AndrÉka, W. Blok, I. NÉmeti, D. Pigozzi and I. Sain, ‘Abstract Algebraic Logic’, chapter for the Handbook of Algebraic Logic (in preparation).

  2. H. AndrÉka, Á. Kurucz, I. NÉmeti and I. Sain, ‘Applying algebraic logic. A general methodology’, Proceedings of the Summer School of Algebraic Logic, Kluwer (to appear). Shortened version of this appeared as ‘Applying algebraic logic to logic’ in Algebraic Methodology and Software Technology, eds. M. Nivat et al., Springer-Verlag, 1994, 5–26.

  3. H. AndrÉka and I. NÉmeti, ‘Craig's interpolation does not imply amalgamation, after all’, manuscript (1994).

  4. H. AndrÉka, I. NÉmeti and I. Sain, On Interpolation, Amalgamation, Universal Algebra and Boolean Algebras with Operators, Mathematical Institute, Budapest, preprint (1994).

    Google Scholar 

  5. H. AndrÉka, I. NÉmeti and I. Sain, ‘Craig property of a logic and decomposability of theories’, in Dekker and Stokhof, Proceeding of the 9th Amsterdam Colloquium, Universiteit van Amsterdam, 1994, 87–92.

  6. H. AndrÉka, I. NÉmeti and I. Sain, ‘Algebraic logic’, in: Handbook of Philosophical Logic, second edition, Vol. I, ed. D. M. Gabbay, Kluwer Publisher, 1997 (to appear).

  7. J. Barwise and S. Feferman (eds.), Model-Theoretic Logics, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  8. P. Blackburn, M. de Rijke and Y. Venema, ‘Lecture notes on modal logic’, Proceedings of the Summer School of Algebraic Logic, Kluwer (to appear).

  9. W. J. Blok and D. Pigozzi, Algebraizable Logics, Memoirs Amer. Math. Soc., vol. 77,no. 396, 1989.

  10. W. J. Blok and D. Pigozzi, ‘Abstract algebraic logic’, Proceedings of the Summer School of Algebraic Logic, Kluwer (to appear).

  11. S. Burris and H. P. Sankapanavar, A Course in Universal Algebra, Springer-Verlag, 1981.

  12. J. Czelakowski and D. Pigozzi, ‘Amalgamation and interpolation in abstract algebraic logic’, Centre de Recerca Matemàtica, Bellaterra, preprint no. 343 (1996).

    Google Scholar 

  13. A. Daigneault, ‘Freedom in polyadic algebras and two theorems of Beth and Craig’, Michigan Math. J. 11 (1964), 129–135.

    Google Scholar 

  14. M. Fitting, ‘Basic modal logic’, in Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1 (Logical Foundation), eds. D. M. Gabbay, C. J. Hogger and J. A. Robinson, Oxford Science Publication, Clarendon Press, Oxford, 1993, 368–449.

    Google Scholar 

  15. J. M. Font and R. Jansana, ‘On the sentential logics associated with strongly nice and semi-nice general logics’, Bulletin of the IGPL vol. 2,no. 1 (1994), 55–76.

    Google Scholar 

  16. J. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Springer Lecture Notes in Logic, vol. 7, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  17. J. M. Font and R. Jansana, ‘A comparison of two general approaches to the algebraization of logics’, Proceedings of the Summer School of Algebraic Logic, Kluwer (to appear).

  18. M. R. FraÏsse, ‘Lextension aux relations de quelque propertietes des opdres’, Annales Sci. L'ecole Normale Superieure, 1954.

  19. E. Fried and G. GrÄtzer, ‘The unique amalgamation property for lattices’, Annales Univ. Sci. Budapest 33 (1990), 167–176.

    Google Scholar 

  20. D. M. Gabbay, What is a Logical System?, Calendron Press, Oxford, 1994.

    Google Scholar 

  21. R. I. Goldblatt, ‘Algebraic polymodal logic’, draft chapter for Handbook of Algebraic Logic, eds. Andréka et al. (to be published by Oxford University Press).

  22. J. A. Goguen and R. M. Burstall, ‘Institutions: Abstract model theory for specification and programming’, Journ. ACM vol. 39,no. 1 (1992), 95–146.

    Google Scholar 

  23. L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, part I, second edition, North-Holland, Amsterdam, 1985.

    Google Scholar 

  24. L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, part II, North-Holland, Amsterdam, 1985.

    Google Scholar 

  25. E. Hoogland, Algebraic characterizations of two Beth definability properties, Master Thesis, University of Amsterdam, 1996.

  26. B. JÓnsson, ‘Extensions of relational structures. The theory of models’, Proceedings of the 1963 International Symposium at Berkeley, eds. J. W. Addison, L. Henkin and A. Tarski, North-Holland, Amsterdam, 1965, 146–157.

    Google Scholar 

  27. B. JÓnsson, ‘A survey of Boolean algebras with operators’, Vanderbilt University, preprint (1992).

  28. B. JÓnsson and A. Tarski, ‘Boolean algebras with operators’, Bulletin of the Amer. Math. Soc. vol. 54 (1948), 79–80.

    Google Scholar 

  29. B. JÓnsson and A. Tarski, Boolean algebras with operators, parts I–II, Amer. J. Math. vol. 73 (1951), 891–939, and vol. 74 (1952), 127–162.

    Google Scholar 

  30. E. W. Kiss, L. MÁrki, P. PrÖhle and W. Tholen, ‘Categorial algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity’, Studia Sci. Math. Hungar. 18 (1983), 79–141.

    Google Scholar 

  31. J. X. MadarÁsz, ‘The Craig interpolation theorem in multi-modal logics’, Bulletin of the Section of Logic vol. 24,no. 3 (1995), 147–151.

    Google Scholar 

  32. J. X. M ADARÁSZ, ‘Interpolation in algebraizable logics; semantics for non normal multi-modal logic’, J. of Applied Non-Classical Logics vol. 8,no. 1–2 (1998).

  33. J. X. MadarÁsz, ‘Interpolation and amalgamation; pushing the limits — part II’, in the next issue of this journal.

  34. L. L. Maksimova, ‘Interpolation theorems in modal logics and amalgamable varieties of topoboolean algebras’ (in Russian), Algebra i Logika vol. 18,no. 5 (1979), 556–586.

    Google Scholar 

  35. L. L. Maksimova, ‘Amalgamation and interpolation in normal modal logics’, Studia Logica vol. 50,no. 3/4 (1991), 457–471.

    Google Scholar 

  36. M. Marx, ‘Algebraic relativization and arrow logic’, PhD thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1995.

  37. I. NÉmeti, ‘Beth definability is equivalent with surjectivness of epis in general algebraic logic’, preprint, Math. Inst. Hungar. Acad. Sci. (1983).

  38. I. NÉmeti, ‘Cylindric-relativised set algebras have strong amalgamation’, Journal of Symbolic Logic vol. 50,no. 3 (1985).

  39. I. NÉmeti, ‘Algebraization of quantifier logics: an overview, version 11.4’, preprint, Math. Inst. Hungar. Acad. Sci., available on the following FTP address: http://circle.math-inst.hu/pub/algebraic-logic/survey.dvi (an early “extended abstract” of this appeared in Studia Logica 50(3/4) (1991), 485–569).

  40. I. NÉmeti and H. AndrÉka, ‘General algebraic logic. A perspective on What is logic’, in What is a Logical System?, ed. D. Gabbay, Clarendon Press, Oxford, 1994, 394–443.

    Google Scholar 

  41. H. Neumann, ‘Generalized free products with amalgamated subgroups’, Am. J. Math. 70 (1948), 590–625, and 71 (1949), 491–540.

    Google Scholar 

  42. D. Pigozzi, ‘Amalgamation, congruence extension and interpolation properties in algebras’, Algebra Universalis 1(3), 1972, 269–394.

    Google Scholar 

  43. I. Sain, ‘Strong amalgamation and epimorphisms of cylindric algebras and Boolean algebras with operators’, preprint, Math. Inst. Hungar. Acad. Sci., 1979, revised 1982.

  44. I. Sain, ‘Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic’, in Algebraic Logic and Universal Algebra in Computer Science, vol. 24 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, (1990), 209–226.

    Google Scholar 

  45. O. Schreier, ‘Die Untergruppen der freien Gruppe’, Abh. Math. Sem. Hamburg 5 (1927), 161–183.

    Google Scholar 

  46. Y. Venema, Many-Dimensional Modal Logics, PhD thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madarász, J.X. Interpolation and Amalgamation; Pushing the Limits. Part I. Studia Logica 61, 311–345 (1998). https://doi.org/10.1023/A:1005064504044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005064504044

Navigation