Skip to main content
Log in

The Potential Response of Terrestrial Carbon Storage to Changes in Climate and Atmospheric CO2

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, Jr. L. H., Boote, K. J., Jones, J. W., Jones, P. H., Valle, R. R., Acock, B., Rogers, H. H., and Dahlman, R. C.: 1987, ‘Response of Vegetation to Rising Carbon Dioxide: Photosynthesis, Biomass, and Seed Yield of Soybean’, Global Biogeochem. Cycles 1, 1–14.

    Google Scholar 

  • Bacastow, R. B. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon in the Natural Carbon Cycle: II. Changes from A.D. 1700 to 2070 as Deduced from a Geochemical Model’, in Woodwell, G. and Pecan, E. (eds.), Carbon and the Biosphere, USAEC, Washington, D.C., pp. 86–134.

    Google Scholar 

  • Brooks, A. and Farquhar, G. D.: 1985, ‘Effect of Temperature on the CO2/O2 Specificity of Ribulose-1,5-biphosphate Carboxylase/oxygenase and the Rate of Respiration in the Light’, Planta 165, 397–406.

    Google Scholar 

  • Clare, F., Kennison, D., and Lackman, B.: 1987, ‘NCAR Graphics User's Guide: Version 2.00’, NCAR Technical Note NCAR/TN-283 + IA, National Center for Atmospheric Research.

  • Cramer, W. P. and Solomon, A. M.: 1993, ‘Climatic Distribution and Future Global Redistribution of Agricultural Land’, Clim. Res. 3, 97–110.

    Google Scholar 

  • Cure, J. D. and Acock, B.: 1986, ‘Crop Response to Carbon Dioxide Doubling: A Literature Survey’, Agric. For. Meteorol. 38, 127–145.

    Google Scholar 

  • Dai, A. and Fung, I. Y.: 1993, ‘Can Climate Variability Contribute to the “Missing” CO2 Sink?’, Global Biogeochem. Cycles 7, 599–609.

    Google Scholar 

  • Emanuel, W. R., Shugart, H. H., and Stevenson, M. P.: 1985, ‘Climatic Change and the Broad-Scale Distribution of Terrestrial Ecosystem Complexes’, Clim. Change 7, 29–43.

    Google Scholar 

  • Esser, G.: 1984, ‘The Significance of Biospheric Carbon Pools and Fluxes for the Atmospheric CO2: A Proposed Model Structure’, Progr. Biometeorol. 3, 253–294.

    Google Scholar 

  • Esser, G.: 1993, ‘Carbon Exchange Between the Terrestrial Biosphere and the Atmosphere’, in Heimann, M. (ed.), The Global Carbon Cycle, Vol. I 15 of NATO ASI Series, Springer-Verlag, Berlin, pp. 261–276.

    Google Scholar 

  • Esser, G. and Lautenschlager, M.: 1994, ‘Estimating the Change of Carbon in the Terrestrial Biosphere From 18 000 BP to Present Using a Carbon Cycle Model’, Environ. Pollut. 83, 45–53.

    Google Scholar 

  • FAO-Unesco: 1971–1981, Soil Map of the World 1: 5 000 000: Volumes II–X, Unesco, Paris.

    Google Scholar 

  • Farquhar, G. D. and von Caemmerer, S.: 1982, ‘Modelling of Photosynthetic Response to Environmental Conditions’, in Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H. (eds.), Physiological Plant Ecology II. Water Relations and Carbon Assimilation, Vol. 12B of Encyclopedia of Plant Physiology. New Series, Springer-Verlag, Berlin, pp. 549–588.

    Google Scholar 

  • Foley, J. A.: 1994, ‘Net Primary Productivity in the Terrestrial Biosphere: The Application of a Global Model’, J. Geophys. Res. 99, 20773–20783.

    Google Scholar 

  • Friedlingstein, P., Delire, C., Muller, J. F., and Gerard, J. C.: 1992, ‘The Climate Induced Variation of the Continental Biosphere: A Model Simulation of the Last Glacial Maximum’, Geophys. Res. Lett. 19, 897–900.

    Google Scholar 

  • Friend, A. D., Shugart, H. H., and Running, S. W.: 1993, ‘A Physiology-Based Gap Model of Forest Dynamics’, Ecology 74, 792–797.

    Google Scholar 

  • Gifford, R. M.: 1980, ‘Carbon Storage by the Biosphere’, in Pearman, G. I. (ed.), Carbon Dioxide and the Climate, Australian Academy of Science, Canberra, pp. 167–181.

    Google Scholar 

  • Gifford, R. M.: 1994, ‘The Global Carbon Cycle: A Viewpoint on the Missing Sink’, Aust. J. Plant. Physiol. 21, 1–15.

    Google Scholar 

  • Goudriaan, J. and Ketner, P.: 1984, ‘A Simulation Study for the Global Carbon Cycle, Including Man's Impact on the Biosphere’, Clim. Change 6, 167–192.

    Google Scholar 

  • Jenkinson, D. S.: 1990, ‘The Turnover of Organic Carbon and Nitrogen in Soil’, Phil. Trans. R. Soc. Lond. B 329, 361–368.

    Google Scholar 

  • Jenkinson, D. S., Adams, D. E., and Wild, A.: 1991, ‘Model Estimates of CO2 Emissions From Soil in Response to Global Warming’, Nature 351, 304–306.

    Google Scholar 

  • Jenne, R. L.: 1992, ‘Climate Model Description and Impact on Terrestrial Climate’, in Majumdar, S. K., Kalkstein, L. S., Yarnal, B., Miller, E. W., and Rosenfield, L. M. (eds.), Global Climate Change: Implications, Challenges, and Mitigation Measures, The Pennsylvania Academy of Science, Pittsburgh, pp. 145–164.

    Google Scholar 

  • Kaduk, J. and Heimann, M.: 1994, ‘The Climate Sensitivity of the Osnabrück Biosphere Model on the ENSO Time Scale’, Ecol. Model. 75/76, 239–256.

    Google Scholar 

  • Kern, J. S.: 1995, ‘Evaluation of Soil Water Retention Models Based on Basic Soil Physical Properties’, Soil Sci. Soc. Amer. J. 59, 1134–1141.

    Google Scholar 

  • Kirschbaum, M. U. F.: 1994, ‘The Sensitivity of C3 Photosynthesis to Increasing CO2 Concentration: A Theoretical Analysis of Its Dependence on Temperature and Background CO2 Concentration’, Plant Cell Environ. 17, 747–754.

    Google Scholar 

  • Körner, C. and Arnone, III, J. A.: 1992, ‘Response to Elevated Carbon Dioxide in Artificial Tropical Ecosystems’, Science 257, 1672–1675.

    Google Scholar 

  • Lieth, H.: 1975, ‘Modelling the Primary Productivity of the World’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere, Springer-Verlag, Berlin, pp. 237–263.

    Google Scholar 

  • Matthews, E.: 1983, ‘Global Vegetation and Land Use: New High Resolution Data Bases for Climate Studies’, J. Clim. Appl. Met. 22, 474–487.

    Google Scholar 

  • Matthews, E.: 1984, ‘Vegetation, Land-Use and Seasonal Albedo Data Sets: Documentation of Archived Data Tape’, NASA Technical Memorandum 86107, NASA, Goddard Space Flight Center, Institute for Space Studies, New York.

    Google Scholar 

  • Matthews, E.: 1985, ‘Atlas of Archived Vegetation, Land-Use and Seasonal Albedo Data Sets’, NASA Technical Memorandum 86107, NASA, Goddard Space Flight Center, Institute for Space Studies, New York.

    Google Scholar 

  • Neilson, R. P.: 1993, ‘Vegetation Redistribution: A Possible Biosphere Source of CO2 During Climate Change’, Wat. Air Soil Pollut. 70, 659–673.

    Google Scholar 

  • Oechel, W. C., Cowles, S., Grulke, N., Hastings, S. J., Lawrence, B., Prudhomme, T., Riechers, G., Strain, B., Tissue, D., and Vourlltis, G.: 1994, ‘Transient Nature of CO2 Fertilization in Arctic Tundra’, Nature 371, 500–503.

    Google Scholar 

  • Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, ‘Carbon in Live Vegetation of Major Ecosystems’, Technical Report ORNL-5862, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1985, ‘Development of a Linked Forest Productivity-Soil Process Model’, Technical Report ORNL/TM-9519, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Polglase, P. J. and Wang, Y. P.: 1992, ‘Potential CO2-Enhanced Carbon Storage by the Terrestrial Biosphere’, Aust. J. Bot. 40, 641–656.

    Google Scholar 

  • Prentice, I. C. and Sykes, M. T.: 1995, ‘Vegetation Geography and Global Carbon Storage Changes’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System, Oxford University Press, New York, pp. 300–312.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeog. 19, 117–134.

    Google Scholar 

  • Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48–51.

    Google Scholar 

  • Rawls, W. J., Brakensiek, D. L., and Saxton, K. E.: 1982, ‘Estimation of Soil Water Properties’, Transactions of the ASAE 25, 1316–1328.

    Google Scholar 

  • Renka, R. J.: 1982, ‘Interpolation of Data on the Surface of a Sphere’, Technical Report ORNL/CSD-108, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Renka, R. J. and Cline, A. K.: 1984, ‘A Triangle-Based C ‘Interpolation Method’, Rocky Mountain J. Math. 14, 223–237.

    Google Scholar 

  • Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, R. T., Parton, W. J., and Townsend, A. R.: 1994, ‘Climatic, Edaphic and Biotic Controls Over Storage and Turnover of Carbon in Soils’, Global Biogeochem. Cycles 8, 279–293.

    Google Scholar 

  • Schmithüsen, J.: 1976, Atlas Zur Biogeographie, Bibliographisches Institut, Zürich.

    Google Scholar 

  • Sedjo, R. A. and Solomon, A. M.: 1989, ‘Climate and Forests’, in Rosenberg, N. J., Easterling, W. E., Crosson, P. R., and Darmstadter, J. (eds.), Greenhouse Warming: Abatement and Adaptation, Resources for the Future, Washington, D.C., pp. 105–119.

    Google Scholar 

  • Smith, T. M., Cramer, W. P., Dixon, R. K., Leemans, R., Neilson, R. P., and Solomon, A. M.: 1993, ‘The Global Terrestrial Carbon Cycle’, Wat. Air Soil Pollut. 70, 19–37.

    Google Scholar 

  • Smith, T. M., Leemans, R., and Shugart, H. H.: 1992, ‘Sensitivity of Terrestrial Carbon Storage to CO2 Induced Climate Change: Comparison of Four Scenarios Based on General Circulation Models’, Clim. Change 21, 3 67–384.

    Google Scholar 

  • Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Publ. Climatol. 10, 183–311.

    Google Scholar 

  • Unesco: 1973, International Classification and Mapping of Vegetation, Unesco, Paris.

    Google Scholar 

  • Walter, H. and Lieth, H.: 1960, Klimadiagramm-Weltatlas, VEG Gustav Fischer-Verlag, Jena, Germany.

    Google Scholar 

  • Weather Bureau: 1959, World Weather Records 1941–1950, U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Webb, R. S., Rosenzweig, C. E., and Levine, E. R.: 1991, ‘A Global Data Set of Soil Particle Size Properties’, NASA Technical Memorandum 4286, NASA, Goddard Space Flight Center, Institute for Space Studies, New York.

    Google Scholar 

  • Wullschleger, S. D., Post, W. M., and King, A. W.: 1995, ‘On the Potential for a CO2 Fertilization Effect in Forest Trees: An Assessment of 58 Controlled-Exposure Studies and Estimates of the Biotic Growth Factor’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climate System, Oxford University Press, New York, pp. 85–107.

    Google Scholar 

  • Zobler, L.: 1986, ‘A World Soil File for Global Climate Modeling’, NASA Technical Memorandum 87802, NASA, Goddard Space Flight Center, Institute for Space Studies, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.W., Post, W.M. & Wullschleger, S.D. The Potential Response of Terrestrial Carbon Storage to Changes in Climate and Atmospheric CO2 . Climatic Change 35, 199–227 (1997). https://doi.org/10.1023/A:1005317530770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005317530770

Keywords

Navigation