Skip to main content
Log in

Tropical Forests in a Future Climate: Changes in Biological Diversity and Impact on the Global Carbon Cycle

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Tropical forest ecosystems are large stores of carbon which supply millions of people with life support requirements. Currently tropical forests are undergoing massive deforestation. Here, I address the possible impact of global change conditions, including elevated CO2, temperature rise, and nitrogen deposition on forest structure and dynamics. Tropical forests may be particularly susceptible to climate change for the following reasons: (1) Phenological events (such as flowering and fruiting) are highly tuned to climatic conditions. Thus a small change in climate can have a major impact on the forest, its biological diversity and its role in the carbon cycle. (2) There are strong coevolutionary interactions, such as pollination seed dispersal, with a high degree of specialization, i.e., only certain animals can effect these activities for certain species. Global change can decouple these tight coevolutionary interactions. (3) Because of high species diversity per unit area, species of the tropical rain forest must have narrow niches. Thus changes in global climate can eliminate species and therefore reduce biological diversity. (4) Deforestation and other forms of disturbance may have significant feedback on hydrology both regionally and globally. The predicted decline in the rainfall in the Amazon Basin and the intensification of the Indian monsoon can have a large effect on water availability and floods which are already devastating low-lying areas. It is concluded that tropical forests may be very sensitive to climate change. Under climatic change conditions their structure and function may greatly change, their integrity may be violated and their services to people may be greatly modified. Because they are large stores of great biological diversity, they require immediate study before it is too late. The study requires the collaboration of scientists with a wide range of backgrounds and experiences including biologists, climate modellers, atmospheric scientists, economists, human demographers and sociologists in order to carry out holistic and urgently needed work. Global climatic change brings a great challenge to science and to policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerly, D. D. and Bazzaz, F. A.: 1995, ‘Plant Growth and Reproduction along CO2 Gradients: Non Linear Responses and Implications for Community Change’, Global Change Biol. 1, 199-207.

    Google Scholar 

  • Ackerly, D., Coleman, J. S., Morse, S. R., and Bazzaz, F. A.: 1992, ‘CO2 and Temperature Effects on Leaf Area Production in Two Annual Plant Species’, Ecology 73, 1260-1269.

    Google Scholar 

  • Amthor, J. S.: 1994, ‘Plant Respiratory Responses to the Environment and Their Effects on the Carbon Balance’, in Wilkinson, R. E. (ed.), Plant-Environment Interactions, Marcel Dekker, New York, pp. 501-554.

    Google Scholar 

  • Arnone, J. A. and Gordon, J. C.: 1990, ‘Effect of Nodulation, Nitrogen Fixation and CO2 Enrichment on the Physiology, Growth and Dry Mass Allocation of Seedings of Alnus RubraBong’, New Phytologist 116, 55-66.

    Google Scholar 

  • Bassow, S. L., McConnaughay, K. D. M., and Bazzaz, F. A.: 1994, ‘The Response of Temperate Tree Seedlings Grown in Elevated CO2 to Extreme Temperature Events’, Ecol. Appl. 4, 593-603.

    Google Scholar 

  • Bawa, K. S. and Hadley, M. (eds.): 1990, Reproductive Ecology of Tropical Forest Plants, UNESCO, Paris, The Parthenon Publishing Group, Lancaster, p. 421.

    Google Scholar 

  • Bazzaz, F. A.: 1984, ‘Dynamics of Wet Tropical Forests and Their Species Strategies’, in Medina, E., Mooney, H. A., and Vazquez-Yanes, C. (eds.), Physiological Ecology of Plants of the Wet Tropics, Dr. W. Junk Publishers, The Hague, pp. 233-243.

    Google Scholar 

  • Bazzaz, F. A.: 1990, ‘Plant-Plant Interaction in Successional Environments’, in Grace, J. B. and Tilman, G. D. (eds.), Perspectives on Plant Competition, Academic Press, San Diego, CA, pp. 239-263.

    Google Scholar 

  • Bazzaz, F. A. 1991: ‘Regeneration of Tropical Forests: Physiological Responses of Pioneer Secondary Species’, in Gómez-Pompa, A., Whitmore, T. C., and Hadley, M. (eds.), Rain Forest Regeneration and Management, The Parthenon Publishing Group, Parkridge, NJ, pp. 91-118.

    Google Scholar 

  • Bazzaz, F. A.: 1996, Plants in Changing Environments: Linking Physiological, Population, and Community Ecology, Cambridge University Press, Cambridge, p. 320.

    Google Scholar 

  • Bazzaz, F. A. and Lerdau, M. T.: 1990, ‘Response of Seedlings of Tropical Trees to Cool Temperatures Predicted by “Nuclear Winter” Scenario’, Environ. Conservation 17, 337-340.

    Google Scholar 

  • Bazzaz, F. A. and Miao, S. L.: 1993, ‘Successional Status, Seed Size, and Responses of Tree Seedlings to CO2, Light, and Nutrients’, Ecology 74, 104-112.

    Google Scholar 

  • Bazzaz, F. A., and Pickett, S. T. A.: 1980, ‘Physiological Ecology of Tropical Succession: A Comparative Review’, Ann. Rev. Ecol. Syst. 11, 287-310.

    Google Scholar 

  • Bazzaz, F. A., Bassow, S. L., Berntson, G. M., and Thomas, S. C.: 1996, ‘Elevated CO2 and Terrestrial Vegetation: Implications for and beyond the Global Carbon Budget’, in Walker, B. and Steffen, W. (eds.), Global Change and Terrestrial Ecosystems, Cambridge University Press, Cambridge, pp. 43-76.

    Google Scholar 

  • Bazzaz, F. A., Garbutt, K. and Williams, W. E.: 1985, ‘Effect of Increased Atmospheric Carbon Dioxide Concentration on Plant Communities’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of IncreasingCarbon Dioxide on Vegetation, United States Department of Energy, National Technical Information Service, Springfield, VA, pp. 155-170.

    Google Scholar 

  • Bazzaz, F. A., Jasienski, M., Thomas, S. C., and Wayne, P.: 1995, ‘Microevolutionary Responses to Elevated CO2 Environments in Experiments in Experimental Populations of Plants: Parallel Results from Two Model Systems’, Proc. Nat. Acad. Sci. 92, 8161-8165.

    Google Scholar 

  • Berntson, G. M. and Bazzaz, F. A.: 1997, ‘Nitrogen Cycling in Microcosms of Yellow Birch Exposed to Elevated CO2: Simultaneous Positive and Negative Below-Ground Feedbacks, Global Change Biol. 3, 247-258.

    Google Scholar 

  • Berntson, G. M. and Woodward, F. I.: 1992, ‘The Root System Architecture and Development of Senecio vulgarisin Elevated Carbon Dioxide and Drought’, Functional Ecol. 6, 324-333.

    Google Scholar 

  • Besford, R. T., Ludwig, L. J., and Withers, A. C.: 1990, ‘The Greenhouse Effect: Acclimation of Tomato Plants Growing in High CO2: Photosynthesis and Ribulose1, 5-Bisphosphate Carboxylase Protein’, J. Exp. Bot. 41, 925-931.

    Google Scholar 

  • Bolker, B.M., Pacala, S.W., Bazzaz, F. A., Canham, C. D., and Levin, S. A.: 1996, ‘Species Diversity and Carbon Dioxide Fertilization of Temperate Forests’, Global Change Biol. 1, 373-381.

    Google Scholar 

  • Ceulemans, R. and Mousseau, M.: 1994, ‘Effects of Elevated Atmospheric CO2 on Woody Plants’, New Phytologist 127, 425-446.

    Google Scholar 

  • Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: 1995, ‘A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C Ratio of Atmospheric CO2’, Science 269, 1098-1102.

    Google Scholar 

  • Coleman, J. S. and Bazzaz, F. A.: 1992, ‘Effects of CO2 and Temperature on Growth and Resource Use of Co Occurring C3 and C4 Annuals’, Ecology 73, 1244-1259.

    Google Scholar 

  • Coley, P. D.: 1998, ‘Possible Effects of Climate Change on Plant/Herbivore Interactions in Moist Tropical Forests’, Clim. Change 39(this volume).

  • Denslow J. S.: 1980, ‘Gap Partitioning among Tropical Rainforest Trees’, Biotropica 12(Suppl.), 47-55.

    Google Scholar 

  • Diaz, S., Grime, J. P., Harris, J., and McPherson, E.: 1993, ‘Evidence of a Feedback Mechanism Limiting Plant Response to Elevated Carbon Dioxide’, Nature 364, 616-617.

    Google Scholar 

  • Dirzo, R.: 1984, ‘Herbivory: A Phytocentric Overview’, in Dirzo, R. and Sarukhán, J. (eds.), Perspectives in Plant Population Ecology, Sinauer Associates Inc., Sunderland, MA, 141-165.

    Google Scholar 

  • Drake, B. G. and Peresta, G. J.: 1993, ‘Open Top Chambers for Studies of the Long-Term Effects of Elevated Atmospheric CO2 on Wetland and Forest Ecosystem Processes’, in Schulze, E. D. and Mooney, H. A. (eds.), Design and Execution of Experiments on CO 2 Enrichment, Commission of the European Communities, Brussels, pp. 273-289.

    Google Scholar 

  • Eamus, D. and Jarvis, P. G.: 1989, ‘The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests’, Adv. Ecol. Res. 19: 1-55.

    Google Scholar 

  • Fajer, E. D., Bowers, M. D., and Bazzaz, F. A.: 1989, ‘The Effects of Enriched Carbon Dioxide Atmospheres on Plant Insect Herbivore Interactions’, Science 243, 1198-1200.

    Google Scholar 

  • Field, C. B., Lund, C. P., Chiariello, N. R., and Mortimer, B. E.: 1997, ‘CO2 Effects on the Water Budget of Grassland Microcosm Communities’, Global Change Biol. 3: 197-206.

    Google Scholar 

  • Godbold, D. L., Berntson, G. M., and Bazzaz, F. A.: in press, ‘Growth and Mycorrhizal Responses of 3 North American Temperature Tree Species in Elevated Atmospheric CO2’, New Phytologist.

  • Gunderson, C. A. and Wullschleger, S. D.: 1994, ‘Photosynthetic Acclimation in Trees to Rising Atmospheric CO2: A Broader Perspective’, Photosynth. Res. 39, 369-388.

    Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Rind, D., Russell, G., Lebedeff, S., and Ruedy, R.: 1988, ‘Global Climate Changes as Forecast by the GISS-3-D Model’, J. Geophys. Res. 93, 9341-9364.

    Google Scholar 

  • Hendrey, G. R. (ed.): 1993, FACE, Free-Air CO 2 Enrichment for Plant Research in the Field, CRC Press, Boca Raton, FL, p. 308.

  • Hogan, K. P., Smith, A. P., and Ziska, L. H.: 1991, ‘Potential Effects of Elevated CO2 and Changes in Temperature on Tropical Plants’, Plant Cell Environ. 14, 763-778.

    Google Scholar 

  • Houghton, R. A.: 1991, ‘Tropical Deforestation and Atmospheric Carbon Dioxide’, Clim. Change 19, 99-118.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.: 1990, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 365.

    Google Scholar 

  • Hulme, M. and Viner, D.: 1998, ‘A Climate Change Scenario for the Forests’, Clim. Change(this volume).

  • Jackson, R. B., Sala, O. E., Field, C. B., and Mooney, H. A.: 1994, ‘CO2 Alters Water Use, Carbon Gain, and Yield for the Dominant Species in a Natural Grassland’, Oecologia 98, 257-262.

    Google Scholar 

  • Koch, G.W. and Mooney, H. A. (eds.): 1996, Carbon Dioxide and Terrestrial Ecosystems, Academic Press, San Diego, p. 443.

    Google Scholar 

  • Janzen, D. H.: 1970, ‘Herbivores and the Number of Tree Species in Tropical Forests’, Amer. Nat. 104, 501-528.

    Google Scholar 

  • Körner, C.: 1998, ‘Tropical Forests in a CO2-Rich-World’, Clim. Change 39(this volume).

  • Körner, C. and Arnone, J. A. III: 1992, ‘Responses to Elevated Carbon Dioxide in Artificial Tropical Ecosystems’, Science 257, 1672-1675.

    Google Scholar 

  • Körner, C. and Bazzaz, F. A. (eds.): 1996, Carbon Dioxide, Population and Communities, Physiological Ecology Series of Academic Press, London, p. 465.

    Google Scholar 

  • Lawton, J. H.: 1995, ‘Ecological Experiments with Model Systems’, Science 269, 328-331.

    Google Scholar 

  • Lincoln, D. E., Fajer, E. D., and Johnson, R. H.: 1993, ‘Plant-Insect Herbivore Interactions in Elevated CO2 Environments’, Trends Ecol. Evol. 8, 64-68.

    Google Scholar 

  • Lindroth, R. L., Kinney, K. K., and Platz, C. L.: 1993, ‘Responses of Deciduous Trees to Elevated Atmospheric CO2: Productivity, Phytochemistry and Insect Performance’, Ecology 74, 763-777.

    Google Scholar 

  • Markham, A., Dudley, N., and Stolton, S.: 1994, Some Like It Hot, World Wildlife International CH-1196 Gland, Switzerland, p. 144.

  • Melillo, J. M., Aber, J. D., and Muratore, J. F.: 1982, ‘Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics’, Ecology 63, 621-626.

    Google Scholar 

  • Melillo, J.M., McGuire, A. D., Kicklighter, D.W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’, Nature 363, 234-239.

    Google Scholar 

  • Miao, S. L., Wayne, P.M., and Bazzaz, F. A.: 1992, ‘Elevated CO2 Differentially Alters the Responses of Co-Occurring Birch and Maple Seedlings to Moisture Gradient’, Oecologia 90, 300-304.

    Google Scholar 

  • Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W.C., and Pitelka, L. F.: 1991, ‘Predicting Ecosystem Responses to Elevated CO2 Concentrations: What has been Learned from Laboratory Experiments on Plant Physiology and Field Observation?’, BioScience 41, 96-104.

    Google Scholar 

  • Norby, R. J., Gunderson, C. A., Wullschleger, H. D., O'Neill, E. G., and McCracken, M. K.: 1992, ‘Productivity and Compensatory Responses of Yellow Poplar Trees in Elevated CO2, Nature 357, 322-324.

    Google Scholar 

  • Oberbauer, S. F., Strain, B. R., and Fetcher, N.: 1985, ‘Effect of CO2-Enrichment on Seedling Physiology and Growth of Two Tropical Tree Species’, Physiol. Plant. 65, 352-356.

    Google Scholar 

  • Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riecher, G., and Grulke, N.: 1993, ‘Recent Change of Arctic Tundra Ecosystems from a Net Carbon Dioxide Sink to a Source’, Nature 361, 520-523.

    Google Scholar 

  • O’Neill, E. G.: 1994, ‘Responses of Soil Biota to Elevated Atmospheric Carbon Dioxide’, Plant Soil 165, 55-65.

    Google Scholar 

  • Owensby, C. E., Coyne, P.I, Ham, J. M., Awen, L.M., and Knapp, A. K.: 1993, ‘Biomass Production in a Tallgrass Prairie Ecosystem Exposed to Ambient and Elevated Levels of CO2’, Ecol. Appl. 3, 644-653.

    Google Scholar 

  • Phillips, O. L. and Gentry, A. H.: 1994, ‘Increasing Turnover through Time in Tropical Forests’, Science 263, 954-958.

    Google Scholar 

  • Poorter, H.: 1993, ‘Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration’, Vegetatio 104/105, 77-97.

    Google Scholar 

  • Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48-50.

    Google Scholar 

  • Reekie, E. G. and Bazzaz, F. A.: 1989, ‘Competition and Patterns of Resource Use among Seedlings of Five Tropical Trees Grown at Ambient and Elevated CO2’, Oecologia 79, 212-222.

    Google Scholar 

  • Reekie, E. G. and Bazzaz, F. A.: 1992, ‘Phenology and Growth in Four Annual Species Grown in Ambient and Elevated CO2’, Can. J. Bot. 69, 2475-2481.

    Google Scholar 

  • Reich, P. B.: 1995, ‘Phenology of Ttropical Forests: Patterns, Causes, and Consequences’, Can. J. Bot. 73, 164-174.

    Google Scholar 

  • Richards, P. W.: 1952, The Tropical Rain Forest: An Ecological Study, Cambridge University Press, London.

    Google Scholar 

  • Richards, P. W.: 1996, The Tropical Rain Forest: An Ecological Study(2nd edition). Cambridge University Press, Cambridge, p. 575.

    Google Scholar 

  • Rochefort, L. and Bazzaz, F. A.: 1992, ‘Growth Response to Elevated CO2 in Seedlings of Four Co-Occurring Birch Species’, Can. J. Forest Res. 22, 1583-1587.

    Google Scholar 

  • Rogers, H. H., Peterson, C. M., McCrimmon, J. N., and Cure, J. D.: 1992, ‘Response of Plant Roots to Elevated Atmospheric Carbon Dioxide’, Plant Cell Environ. 15, 749-752.

    Google Scholar 

  • Rogers, H. H., Runion, G. B., and Krupa, S. V.: 1994a, ‘Plant Responses to Atmospheric CO2 Enrichment with Emphasis on Roots and the Rhizosphere’, Environ. Pollut. 83, 155-189.

    Google Scholar 

  • Rogers, H. H., Runion, G. B., Krupa, S. V., and Prior, S. A.: 1994b, ‘Plant Responses to Atmospheric CO2 Enrichment: Implications in Root Soil-Microbe Interactions’, in Allen, L. H., Advances in CO 2 Effects Research, ASA, CSSA, and SSA, Madison, WI, in press.

    Google Scholar 

  • Sage, R. F.: 1994, ‘Acclimation of Photosynthesis to Increasing Atmospheric CO2: The Gas Exchange Perspective’, Photosynth. Res. 39, 351-368.

    Google Scholar 

  • Salati, E.: 1985, ‘The Climatology and Hydrology of Amazonia’, in Prance, G. T. and Lovejoy, T. E. (eds.), Amazonia, Pergamon Press, Oxford.

    Google Scholar 

  • Schlesinger, W. H.: 1986, ‘Changes in Soil Carbon Storage and Associated Properties with Disturbance and Recovery’, in Trabalka, J. R. and Reichle, D.E. (eds.), The Changing Carbon Cycle: A Global Analysis, SpringerVerlag, New York, pp. 194–220

    Google Scholar 

  • Schneider, S. H.: 1989, ‘The Changing Climate’, Sci. Amer. 261, 70-79.

    Google Scholar 

  • Schulze, E. D. and Mooney, H. A. (eds.): 1993, Design and Execution of Experiments on CO 2 Enrichment, Proceedings of a Workshop held at Weidenberg, Germany, Commission of the European Communities, Luxembourg, p. 420.

  • Sheen, J.: 1994, ‘Feedback Control of Gene Expression’, Photosynth. Res. 39, 437-438.

    Google Scholar 

  • Silver, W. L.: 1998, ‘The Potential Effects of Elevated CO2 and Climate Change on Tropical Forest Soils and Biogeochemical Cycling’, Clim. Change 39(this volume).

  • Strain, B. R. and Cure, J. D. (eds.): 1994, Direct Effects of Atmospheric CO 2 Enrichment on Plants and Ecosystems: An Updated Bibliographic Data Base, Oak Ridge National Laboratory, Oak Ridge, TN, p. 287.

    Google Scholar 

  • Tans, P. P., Fung, I.Y., and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431-1438.

    Google Scholar 

  • Townsend, A. R., Vitousek, P. M., and Holland, E. A.: 1992, ‘Tropical Soils Could Dominate the Short-Term Carbon-Cycle Feedbacks to Global Warming’, Clim. Change 22, 293-303.

    Google Scholar 

  • Traw, M. B., Lindroth, R. L., and Bazzaz, F. A.: 1996, Decline in Gypsy Moth (Lymantria dispar), Performance in an Elevated CO2 Atmosphere Depends upon Host Plant Species, Oecologia 108, 113-120.

    Google Scholar 

  • Vitousek, P.: 1984, ‘Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests’, Ecology 65, 285-298.

    Google Scholar 

  • Waring, R. H., Law, B. E., Goulden, M. L., Bassow, S. L., McCreight, R. W., Wofsy, S. C., and Bazzaz, F. A.: 1995, ‘Scaling Tower Estimates of Photosynthesis with a Constrained Quantum-Use Efficiency Model and Remote Sensing’, Plant Cell Environ. 18, 1201-1213 (special issue on scaling).

    Google Scholar 

  • Wayne, P. M. and Bazzaz, F. A.: 1995, ‘Yellow Birch Growth Responses to Elevated CO2 Atmospheres: Density-Dependent Differences among Maternal Families’, Global Change Biol. 1, 315-324.

    Google Scholar 

  • Wayne, P. M. and Bazzaz, F. A.: 1997, ‘Light Acquisition and Growth by Competing Individuals in CO2-Enriched Atmospheres: Consequences for Size Structure in Regenerating Birch Stands’, J. Ecol. 85: 29-42.

    Google Scholar 

  • Whitmore, T. C.: 1984, Tropical Rain Forests of the Far East(second edition), Clarendon Press, Oxford, p. 352.

    Google Scholar 

  • Whittaker, R. H.: 1985, Communities and Ecosystems, MacMillan Publishing Co., New York, p. 385.

    Google Scholar 

  • Wisniewski, J. and Lugo, A. E. (eds.): 1992, Natural Sinks of CO 2 . Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: 1993, ‘Net Exchange of CO2 in a Mid Latitude Forest. Science 260, 1314-1317.

    Google Scholar 

  • Woodward, F. I., Thompson, G. B., and McKee, I. F.: 1991, ‘The Effects of Elevated Concentrations of Carbon Dioxide on Individual Plants, Populations, Communities and Ecosystems’, Ann. Botany 67, 23-38.

    Google Scholar 

  • Woodwell, G. M. and Mackenzie, F. T. (eds.): 1995, Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming?, Oxford University Press, New York, p. 416.

    Google Scholar 

  • Wullschleger, S. D., Post, W. M., and King, A. W.: 1995, ‘On the Potential for a CO2 Fertilization Effect in Forests: Estimates of the Biotic Growth Factor, Based on 58 Controlled Exposure Studies’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 85-107.

    Google Scholar 

  • Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R., and Randlett, D. L.: 1993, ‘Elevated Atmospheric CO2 and Feedback Between Carbon and Nitrogen Cycles in Forested Ecosystems’, Plant Soil 151, 105-117.

    Google Scholar 

  • Ziska, L.H., Hogan, K. P., Smith, A. P., and Drake, B.G.: 1991, ‘Growth and Photosynthetic Response of Nine Tropical Species with Long-Term Exposure to Elevated Carbon Dioxide’, Oecologia 86, 383-389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazzaz, F.A. Tropical Forests in a Future Climate: Changes in Biological Diversity and Impact on the Global Carbon Cycle. Climatic Change 39, 317–336 (1998). https://doi.org/10.1023/A:1005359605003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005359605003

Keywords

Navigation