Skip to main content
Log in

Polar Winter: A Biological Model for Impact Events and Related Dark/Cold Climatic Changes

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Models of the climatic perturbation caused by a large scale extraterrestrial impact predict an injection of dust into the stratosphere. This would cause the onset of environmental conditions whose two principal characteristics are a prolonged period of darkness and reduced global temperatures. Similar scenarios follow large scale volcanic eruptions, wildfires and they are predicted for a nuclear winter following a protracted nuclear exchange. A significant drop in temperature and solar insolation are also characteristics of the polar winter. In this paper the onset and emergence from the polar winter is examined as a potential biological framework for studying immediate biological effects following transition into and out of a dark/cold catastrophe. Limitations of the conceptual model, particularly with respect to the fact that polar organisms are well adapted to a regular and severe dark/cold climatic change (which the rest of the Earth's biota is not) are discussed. The model has implications for the poles as an extinction refuge during such climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackley, S. F. and Sullivan, C. W.: 1994, ‘Physical Controls on the Development and Characteristics of Antarctic Sea Ice Biological Communities — A Review and Synthesis’, Deep-Sea Res. 41, 1583-1604.

    Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V.: 1980, ‘Extraterrestrial Cause of the K / T Extinction’, Science 208, 1095-1108.

    Google Scholar 

  • Amy, P. S., Pauling, C., and Morita, R. Y.: 1983, ‘Starvation-Survival Processes of a Marine Vibrio’, Appl. Environ. Microbiol. 45, 1041-1048.

    Google Scholar 

  • Anderson, D. M. and Keafer, B. A.: 1987, ‘An Endogenous Annual Clock in the Toxic Marine Dinoflagellate Gonyaulax tamarensis’, Nature 325, 616-617.

    Google Scholar 

  • Andreev, A. V.: 1991, ‘Winter Adaptations in the Willow Ptarmigan’, Arctic 44, 106-114.

    Google Scholar 

  • Antia, N. J. and Cheng, J. Y.: 1970, ‘The Survival of Axenic Cultures of Marine Planktonic Algae from Prolonged Exposure to Darkness at 20 °C’, Phycologia 9, 179-183.

    Google Scholar 

  • Behrenfeld, M. J. and Falkowski, P. G.: 1997, ‘Photosynthetic Rates Derived from Satellite-Based Chlorophyll Concentration’, Limnol. Ocean. 42, 1-20.

    Google Scholar 

  • Bratbak, G., Heldal, M., Norland, S., and Thingstad, T. F.: 1990, ‘Viruses as Partners in Spring Bloom Microbial Trophodynamics’, Appl. Environ. Microbiol. 56, 1400-1405.

    Google Scholar 

  • Cota, G. F., Kottmeier, S. T., Robinson, D. H., Smith, O., and Sullivan, C. W.: 1990, ‘Bacterioplankton in the Marginal Ice Zone of the Weddell Sea: Biomass, Production and Metabolic Activities during Austral Autumn’, Deep-Sea Res. 37, 1145-1167.

    Google Scholar 

  • Davidson, A. T. and Marchant, H. J.: 1994, ‘The Impact of Ultraviolet Radiation on Phaeocystis and Selected Species of Antractic Marine Diatoms’, in Weiler, C. S. and Penhale, P. A. (eds.), Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, American Geophysical Union, Washington DC, pp. 187-205.

    Google Scholar 

  • Deacon, G. E. R.: 1982, ‘Physical and Biological Zonation in the Southern Ocean’, Deep-Sea Res. 29, 1-5.

    Google Scholar 

  • Delille, D.: 1993, ‘Seasonal-Changes in the Abundance and Composition of Marine Heterotrophic Bacterial Communities in an Antarctic Coastal Area’, Polar Biol. 13, 463-470.

    Google Scholar 

  • Ehrlich, P. R., Sagan, C., Kennedy, D., and Roberts, W. O.: 1984, The Cold and the Dark, Norton and Company, New York, p. 229.

    Google Scholar 

  • El-Sayed, S. Z. and Taguchi, S.: 1981, ‘Primary Production and Standing Crop of Phytoplankton along the Ice-Edge in the Weddell Sea’, Deep-Sea Res. 28, 1017-1032.

    Google Scholar 

  • El-Sayed, S. Z., Stephens, F. C., Bidigare, R. R., and Ondrusek, M. E.: 1990. ‘Effect of Ultraviolet Radiation on Antarctic Marine Phytoplankton’, in Kerry, K. and Hempel, G. (eds.), Proceedings of the 5th SCAR Symposium on the Ecological Changes and Conservation of Antarctic Ecosystems, Springer-Verlag, Berlin, pp. 379-385.

    Google Scholar 

  • El-Sayed, S. Z. and Fryxell, G. A.: 1993, ‘Phytoplankton’, in Friedmann, E. I. (ed.), Antarctic Microbiology, Wiley-Liss, New York, pp. 65-122.

    Google Scholar 

  • Eppley, R.W.: 1972, ‘Temperature and Phytoplankton Growth in the Sea’, Fish. Bull. 70, 1063-1085.

    Google Scholar 

  • Fryxell, G. A., Villareal, T. A., and Hoban, M. A.: 1979, ‘Thallassiosira scotia sp. Nov.: Observations on a Phytoplankton Increase in Early Austral Spring North of the Scotia Ridge’, J. Plankton Res. 1, 335-370.

    Google Scholar 

  • Garrison, D. L. and Buck, K. R.: 1985, ‘Sea-Ice Algal Communties in the Weddell Sea: Species Composition in Ice and Plankton Assemblages’, in Gray, J. S. and Christiansen, M. E. (eds.), Marine Biology of the Polar Regions and Effects of Stress on Marine Organisms, Wiley, New York.

    Google Scholar 

  • Garrison, D. L.: 1991, ‘Antarctic Sea-Ice Biota’, Amer. Zool. 31, 17-33.

    Google Scholar 

  • Gerstl, S. A. and Zardecki, A.: 1982, ‘Reduction of Photosynthetically Active Radiation under Extreme Stratospheric Aerosol Loads’, Geol. Soc. Amer. Special Paper 190, 201-210.

    Google Scholar 

  • Gibson, J. A. E., Garrick, R. C., and Burton, H. R.: 1990, ‘Seasonal Fluctuation of Bacterial Numbers near the Antarctic Continent’, in Proceedings of the NIPR Symposium on Polar Biology, Vol. 3, pp. 16-22.

    Google Scholar 

  • Gray, D. R.: 1993, ‘Behavioral Adaptations to Arctic Winter: Shelter Seeking by the Arctic Hare (Lepus arcticus)’, Arctic 46, 340-453.

    Google Scholar 

  • Heath, C. W.: 1988, ‘Annual Primary Productivity of an Antarctic Continental Lake: Phytoplankton and Benthic Algal Mat Production Strategies’, Hydrobiologia 165, 77-87.

    Google Scholar 

  • Helmke, E. and Weyland, H.: 1995, ‘Bacteria in Sea Ice and Underlying Water of the Eastern Weddell Sea in Midwinter’, Mar. Ecol. Prog. Ser. 117, 169-187.

    Google Scholar 

  • Hempel, G.: 1985, ‘Antarctic Marine Foodwebs’, in Siegfried, W. R., Condy, P. R., and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, pp. 266-270.

    Google Scholar 

  • Holm-Hansen, O., El-Sayed, S. Z., Franceschini, G. A., and Cuhel, R. L.: 1977, ‘Primary Production and the Factors Controlling Phytplankton Growth in the Southern Ocean’, in Llano, G. A. (ed.), Adaptations within Antarctic Ecosystems: Proceedings of the Third SCAR Symposium on Antarctic Biology, Gulf Publishing Company, Houston, TX, pp. 11-50.

    Google Scholar 

  • Holm-Hansen, O., Mitchell, B. G., Hewes, C. D., and Karl, D. M.: 1989, ‘Phytoplankton Blooms in the Vacinity of Palmer Station, Antarctica’, Polar Biol. 10, 49-57.

    Google Scholar 

  • Hoshiai, T.: 1969, ‘Seasonal Variation of Chlorophyll a and Hydrological Conditions under Sea Ice at Syowa Station, Antarctica’, Antarctic Record 35, 52-67.

    Google Scholar 

  • Jablonski, D., Sepkoski, J. J., Bottjer, D. J., and Sheehan, P.M.: 1983, ‘Onshore-Offshore Patterns in the Evolution of Phanerozoic Shelf Communities’ Science 222, 1123-1125.

    Google Scholar 

  • Johnston, C. G. and Vestal, J. R.: 1991, ‘Photosynthetic Carbon Incorporation and Turnover in Antarctic Cryptoendolithic Communities: Are They the Slowest Growing Communities on Earth?’, Appl. Environ. Microbiol. 57, 2308-2311.

    Google Scholar 

  • Karl, D. M.: 1993, ‘Microbial Processes in the Southern Oceans’, in Friedmann, E. I. (ed.), Antarctic Microbiology, Wiley-Liss, New York, pp. 1-63.

    Google Scholar 

  • Kivi, K. and Kuosa, H.: 1994, ‘Late Winter Microbial Communities in the Western Weddell Sea (Antarctica)’, Polar Biol. 14, 389-399.

    Google Scholar 

  • Knox, G. A.: 1994, The Biology of the Southern Ocean, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kottmeier, S. T. and Sullivan, C.W.: 1987, ‘Late Winter Primary Production and Bacterial Production in Sea-Ice and Seawater West of the Antarctic Peninsula’, Mar. Ecol. Prog. Ser. 36, 287-298.

    Google Scholar 

  • Lamb, H. H.: 1977, Climate: Present, Past and Future, Methuen, London.

    Google Scholar 

  • Lutjeharms, J. R. E., Walters, N. M., and Allanson, B. R.: 1985, ‘Oceanic Frontal Systems and Biological Enhancement’, in Siegfried, W. R., Condy, P. R., and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, pp. 266-270.

    Google Scholar 

  • Martin, J. H.: 1989, ‘Glacial-Interglacial CO2 Change: The Iron Hypothesis’, Palaeoceanography 5, 1-13.

    Google Scholar 

  • Matsuda, O., Ishikawa, S., and Kawaguchi, K.: 1990, ‘Seasonal Variation of Particulate Organic Matter under the Antarctic Fast Ice and Its Importance to Benthic Life’, in Kerry, K. R. and Hempel, G. (eds.), Antarctic Ecosystems, Ecological Change and Conservation, Springer-Verlag, Berlin, pp. 143-148.

    Google Scholar 

  • Milne, D. H. and McKay, C. P.: 1982, ‘Response of Marine Plankton Communities to a Global Atmospheric Darkening’, Geol. Soc. Amer. Special Paper 190, 297-303.

    Google Scholar 

  • Mitchell, B. G. and Holm-Hansen, O.: 1991, ‘Observations and Modeling of the Antarctic Phytoplankton Crop in Relation to Mixing Depth’, Deep-Sea Res. 38, 981-1007.

    Google Scholar 

  • Moyer, C. L. and Morita, R. Y.: 1989a, ‘Effect of Growth Rate and Starvation-Survival on the Viability and Stability of a Psychrophilic Marine Bacterium’ Appl. Environ. Microbiol. 55, 1122-1127.

    Google Scholar 

  • Moyer, C. L. and Morita, R. Y.: 1989b, ‘Effect of Growth Rate and Starvation-Survival on Cellular DNA, RNA and Protein of a Psychrophilic Marine Bacterium’, Appl. Environ. Microbiol. 55, 2710-2716.

    Google Scholar 

  • Nelson, D. M., Smith, W. O., Gordon, L. I., and Huber, B. A.: 1987, ‘Spring Distributions of Density, Nutrients and Phytoplankton Biomass in the Ice Edge Zone of the Weddell-Scotia Sea’, J. Geophys. Res. 92, 7181-7190.

    Google Scholar 

  • Neori, A. and Holm-Hansen, P.: 1982, ‘Effect of Temperature on Rate of Photosynthesis in Antarctic Phytoplankton’, Polar Biol. 1, 33-38.

    Google Scholar 

  • Nienow, J. A. and Friedmann, E. I.: 1993, ‘Terrestrial Lithophytic Communities’, in Friedman, E. I. (ed.), Antarctic Microbiology, Wiley-Liss, New York, pp. 343-412.

    Google Scholar 

  • Norris, G.: 1976, ‘Phytoplankton Changes near the Cretaceous-Tertiary Boundary’, in Cretaceous-Tertiary Extinctions and Possible Terrestrial and Extraterrestrial Causes, Syllogeus, National Museum of Canada (by the K-TEC group).

  • Norton, I. O. and Sclater, J. G.: 1979, ‘A Model for the Evolution of the Indian Ocean and the Breaking Up of Gondwana Land’, J. Geophys. Res. 84B, 6803-6830.

    Google Scholar 

  • Novitsky, J. A. and Morita, R. Y.: 1976, ‘Morphological Characterization of Small Cells Resulting from Nutrient Starvation of a Psychrophilic Marine Vibrio’, Appl. Environ. Microbiol. 32, 617-622.

    Google Scholar 

  • Novitsky, J. A. and Morita, R. Y.: 1977, ‘Survival of a Psychrophilic Marine Vibrio under Long-Term Nutrient Starvation’, Appl. Environ. Microbiol. 33, 635-641.

    Google Scholar 

  • Novitsky, J. A. and Morita, R. Y.: 1978, ‘Possible Strategy for the Survival of Marine Bacteria under Starvation Conditions’, Mar. Biol. 48, 289-295.

    Google Scholar 

  • Orvig, S.: 1970, Climates of the Polar Regions, Elsevier, Amsterdam.

    Google Scholar 

  • Palmisano, A. C. and Sullivan, C. W.: 1982, ‘Physiology of Sea Ice Diatoms. I. Response of Three Diatoms to a Simulated Summer-Winter Transition’, J. Phycol. 18, 489-498.

    Google Scholar 

  • Palmisano, A. C. and Sullivan, C. W.: 1983, ‘Physiology of Sea Diatoms. II. Dark Survival of Three Ice Diatoms’, Can. J. Microbiol. 29, 157-160.

    Google Scholar 

  • Palmisano, A. C., SooHoo, J. B., Moe, R. L., and Sullivan, C.W.: 1987, ‘Sea Ice Microbial Communities VII. Changes in Under-Ice Spectral Irradiance during the Development of Antarctic Sea Ice Microalgal Communities’, Mar. Ecol. Prog. Ser. 35, 165-173.

    Google Scholar 

  • Pollack, J. B., Toon, O. B., Ackerman, T. P., McKay, C. P., and Turco, R. P.: 1983, ‘Environmental Effects of an Impact Generated Dust Cloud: Implications for the Cretaceous-Tertiary Extinctions’, Science 219, 287-289.

    Google Scholar 

  • Pope, K. O., Baines, K. H., Ocampo, A. C., and Ivanov, B. A.: 1994, ‘Impact Winter and the Cretaceous/Tertiary Extinctions: Results of a Chicxulub Asteroid Impact Model’, Earth Planet. Sci. Lett. 128, 719-725.

    Google Scholar 

  • Potts, M.: 1994, ‘Dessication Tolerance of Prokaryotes’, Microbiol. Rev. 58, 755-805.

    Google Scholar 

  • Prestrud, P.: 1991, ‘Adaptations by the Arctic Fox (Alopex Lagopus) to the Polar Winter’, Arctic 44, 132-138.

    Google Scholar 

  • Prevost, J.: 1961, Ecologie du Manchot Empereur, Hermann, Paris.

    Google Scholar 

  • Prinn, R. G. and Fegley, B.: 1987, ‘Bolide Impacts, Acid Rain, and Biospheric Traumas at the Cretaceous/Tertiary Boundary’, Earth Planet. Sci. Lett. 83, 1-15.

    Google Scholar 

  • Rampino, M. R., Self, S., and Stothers, R. B.: 1988, ‘Volcanic Winters’, Ann. Rev. Earth Planet. Sci. 16, 73-99.

    Google Scholar 

  • Rivkin, R. B., Putt, M., Alexander, S. P., Meritt, D., and Gaudet, L.: 1989, ‘Biomass and Production in Polar Planktonic and Sea Ice Microbial Communities: A Comparative Study’, Mar. Biol. 101, 273-283.

    Google Scholar 

  • Satoh, H., Watanabe, K., Kanda, H., and Takahashi, E.: 1986, ‘Seasonal Changes of Chlorophyll a Standing Stocks and Oceanographic Conditions under Fast Ice near Syowa Station, Antarctica’, Antarctic Record 30, 19-32.

    Google Scholar 

  • Satoh, H., Fukumi, K., Watanabe, K., and Takahashi, E.: 1989, ‘Seasonal Changes in Heterotrophic Bacteria under Fast Ice near Syowa Station, Antarctica’, Can. J. Microbiol. 35, 329-333.

    Google Scholar 

  • Schmidt, S., Moskall, W., De Mora, S. J. D., Howard-Williams, C., and Vincent W. F.: 1991, ‘Limnological Properties of Antarctic Ponds during Winter Freezing’, Antarctic Sci. 3, 379-388.

    Google Scholar 

  • Schnack, S. B.: 1983, ‘On the Feeding of Copepods on Thalassiosira partheneia from the Northwest African Upwelling Area’, Mar. Ecol. Prog. Ser. 11, 49-53.

    Google Scholar 

  • Seitz, R.: 1986, ‘Siberian Fire as “Nuclear Winter” Guide’, Nature 323, 116-117.

    Google Scholar 

  • Sepkoski, J. J.: 1982, ‘Mass Extinstions in the Phanerozoic Oceans: A Review’, Geol. Soc. Amer. Special Paper 190, 283-289.

    Google Scholar 

  • Sheehan, P. M.: 1982, ‘Brachiopod Macroevolution at the Ordovician-Silurian Boundary’, Third N. Am. Paleontol. Conv. Prod. 2, 477-481.

    Google Scholar 

  • Sieburth, J. M.: 1960, ‘Acrylic Acid, an “Antibiotic” Principle in Phaeocystis Blooms in Antarctic Waters’, Science 132, 676-677.

    Google Scholar 

  • Sleep, N. H., Zahnle, K. J., Kasting, J. F., and Morowitz, H. J.: 1989, ‘Annihilation of Ecosystems by Large Asteroid Impacts on the Early Earth’, Nature 342, 139-142.

    Google Scholar 

  • Smith, W. C., Baker, K. S., Fraser, W. R., Hofmann, E. E., Karl, D. M., Klinck, J. M., Quetin, L. B., Prézelin, B. B., Ross, R. M., Trivelpiece, W. Z., and Vernet, M.: 1995, ‘The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica’, Oceanography 8, 77-86.

    Google Scholar 

  • Smith, W. O. and Nelson, D. M.: 1985, ‘Phytoplankton Bloom Produced by Receding Ice Edge in the Ross Sea: Spatial Coherence with the Density Field’, Science 227, 163-166.

    Google Scholar 

  • Stanley, S. M.: 1984, ‘Marine Mass Extinctions: A Dominant Role for Temperature’, in Nitecki, M. H. (ed.), Extinctions, University Chicago Press, Chicago, pp. 69-117.

    Google Scholar 

  • Sverdrup, H. U.: 1953, ‘On Conditions for the Vernal Blooming of Phytoplankton’, Journal du Conseil International pour l'Exploration de la Mer 18, 287-295.

    Google Scholar 

  • Syvertsen, E. E.: 1985, ‘Resting Spore Formation in the Antarctic Diatoms Coscinodiscus furcatus Karsten and Thalassiosira australis Peragallo’, Polar Biol. 4, 113-119.

    Google Scholar 

  • Tang, E. P. Y., Tremblay, R., and Vincent, W. F.: 1997, ‘Cyanobacterial Dominance of Polar Freshwater Ecosystems: Are High Latitude Mat-Formers Adapted to Low Temperature?’, J. Phycol. 33, 171-181.

    Google Scholar 

  • Tevini, M.: 1993, UV-B Radiation and Ozone Depletion, CRC Press, Florida.

    Google Scholar 

  • Therstein, H. R.: 1981, ‘Late Cretaceous Nanoplankton and the Change at the Cretaceous-Tertiary Boundary’, in Warme, J. et al. (eds.), The Deep Sea-Drilling Project: A Decade of Progress, Soc. Econ. Paleontol. Mineralogists Spec. Pub. 32, 355-394.

  • Thierstein, H. R.: 1982, ‘Terminal Cretaceous Plankton Extinctions: A Critical Assessment’, Geol. Soc. Amer. Special Paper 190, 385-399.

  • Tilzer, M. M., Bodungen, B., and Smetacek, V.: 1985, ‘Light-Dependence of Phytoplankton Photosynthesis in the Antarctic Ocean: Implications for Regulating Productivity’, in Siegfried, W. R., Condy, P. R., and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin.

    Google Scholar 

  • Tilzer, M. M. and Dubinsky, Z.: 1987, ‘Effects of Temperature and Day Length on the Mass Balance of Antarctic Phytoplankton’, Polar Biol. 7, 35-42.

    Google Scholar 

  • Tilzer, M. M., Elbrächter, M., Gieskes, W.W., and Beese, B.: 1986, ‘Light-Temperature Interactions in the Control of Photosynthesis in Antarctic Phytoplankton’, Polar Biol. 5, 105-111.

    Google Scholar 

  • Toon, O. B., Pollack, J. B., Ackerman, T. P., Turco, R. P., McKay, C. P., and Liu, M. S.: 1982, ‘Evolution of an Impact-Generated Dust Cloud and Its Effects on the Atmosphere’, Geol. Soc. Amer. Special Paper 190, 187-200.

    Google Scholar 

  • Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., and Covey, C.: 1997, ‘Environmental Perturbations Caused by the Impacts of Asteroids and Comets’, Rev. Geophys. 35, 41-78.

    Google Scholar 

  • Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C.: 1985, ‘Ozone, Dust, Smoke and Humidity in Nuclear Winter’, Nature 317, 21-22.

    Google Scholar 

  • Turco, R. P., Toon, O. B., Ackerman, T. R., Pollack, J. B., and Sagan, C.: 1990, ‘Climate and Smoke: An Appraisal of Nuclear Winter’, Uspekhi Fizicheskikh Nauk 161, 89-123.

    Google Scholar 

  • Veevers, J. J. and McElhinny, M. W.: 1970, ‘The Separation of Australia from Other Continents’, Earth Sci. Rev. 12, 139-159.

    Google Scholar 

  • Vermeij, G. J.: 1986, ‘Survival during Biotic Crises: The Properties and Evolutionary Significance of Refuges’, in Elliot, D. K. (ed.), Dynamics of Extinction, John Wiley and Sons, New York.

    Google Scholar 

  • Vincent, W. F. and Howard-Williams, C.: 1986, ‘Microbial Ecology of Antarctic Streams’, in Proceedings of the IV Symposium on Microbial Ecology, Slovene Soviety for Microbiology, Ljubljana, pp. 201-206.

    Google Scholar 

  • Vincent, W. F., Howard-Williams, C., and Broady, P. A.: 1993a, ‘Microbial Communities and Processes in Antarctic Flowing Waters’, in Friedman, I. (ed.), Antarctic Microbiology, John Wiley and Sons, New York.

    Google Scholar 

  • Vincent, W. F., Downes, M. T., Castenholz, R. W., and Howard-Williams, C.: 1993b, ‘Community Structure and Pigment Organization of Cyanobacteria-Dominated Microbial Mats in Antarctica’, Eur. J. Psychol. 28, 213-221.

    Google Scholar 

  • Vincent, W. F. and Quesada, A.: 1994, ‘Ultraviolet Radiation Effects on Cyanobacteria: Implications for Antarctic Microbial Ecosystems’, in Weiler, C. S. and Penhale, P. A. (eds.), Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Antarctic Res. Ser. 62, 111-124.

  • Watanabe, K. and Satoh, H.: 1987, ‘Seasonal Variations of Ice Algal Standing Crop near Syowa Station, East Antarctica in 1984/85’, Bull. Plankton Soc. Japan 34, 143-164.

    Google Scholar 

  • Weiler, C. S. and Penhale, P. A.: 1994, Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Antarctic Res. Ser. 62, American Geophysical Union, Washington DC.

    Google Scholar 

  • Weslawski, J. M., Kwasniewski, S., and Wiktor, J.: 1991, ‘Winter in a Svalbard Fjord Ecosystem’, Arctic 44, 115-123.

    Google Scholar 

  • Zwally, H. J., Parkinson, C. L., and Comiso, J. C.: 1983, ‘Variability of Antarctic Sea Ice and Changes in Carbon Dioxide’, Science 220, 1005-1012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockell, C.S., Stokes, M.D. Polar Winter: A Biological Model for Impact Events and Related Dark/Cold Climatic Changes. Climatic Change 41, 151–173 (1999). https://doi.org/10.1023/A:1005465513592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005465513592

Keywords

Navigation