Skip to main content
Log in

Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Somatostatin analogues are in clinical use for thediagnosis and treatment of several oncological indications, namelypituitary adenomas and endocrine gastrointestinal tumors. In additionfor a variety of malignancies their potential valueis being studied. It has been speculated thatsomatostatin plays a role in the homeostasis ofgliomas, and that gliomas could be susceptible toantiproliferative effects of somatostatin analogues. These assumptions weretested in 20 human cell lines derived frommalignant gliomas and 4 glioblastoma tissue specimens, whichwere analyzed for their expression of the fiveknown somatostatin receptor genes (SSTR1–5) and for thereceptor function. Using semiquantitative PCR techniques, SSTR2 transcriptswere found in all 20 cell lines and4 glioblastomas, SSTR1 transcripts were detected in 9cell lines and 4 glioblastomas, and SSTR3 transcriptswere noted in 7 cell lines and 1glioblastoma. SSTR4 and SSTR5 transcripts were only rarelydetected. Gene expression profiles in glioblastoma tissue specimensresembled those of the cell lines in qualityas well as quantity, with average transcript levelsbeing highest for the SSTR2, followed by SSTR1and SSTR3. However, when compared to GH 3 anteriorpituitary tumor cells, the relative amounts of PCRamplified DNA fragments were found to be atleast 120 fold lower in glioblastoma cell linesand tumor specimens. Binding studies indicated that glioblastomaderived cells contained only minute amounts of SSTRs.No inhibition of proliferation was observed when 10selected cell lines were incubated with somatostatin-14 (SST-14)or octreotide (SMS 201 -995) at concentrations ranging from10-9 -6M, however, the proliferationof two cell lines was weakly stimulated after6 days of incubation with 10-6 octreotide.The activity of adenylate cyclase, stimulated by forskolin,was inhibited by maximally 25% at 10-6 MSST-14 or octreotide in one of 5 selectedglioblastoma cell lines. Somatostatin peptides do not seemto exert anti-proliferative effects on glioblastoma cells andtherefore appear to be of no obvious valuefor glioblastoma therapy. Most likely the amount ofcell surface SSTRs is not sufficient to mediateantiproliferative effects. Since it has been described thatSSTRs are detectable on most differentiated gliomas aswell as astrocytes, it may be speculated thatSSTRs may be relevant only in the contextof well differentiated cellular programs but lose theirsignificance with progressive dedifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R: Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79, 1973

    Google Scholar 

  2. Reichlin S: Somatostatin I and II. N Engl J Med 309: 1495–1501, 1556–1563, 1983

    Google Scholar 

  3. Epelbaum J: Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol 27: 63–100, 1986

    Google Scholar 

  4. Gonzalez BJ, Leroux P, Bodenant C, Braquet P, Vaudry H: Pharmacological characterization of somatostatin receptors in the rat cerebellum during development. J Neurochem 55: 729–737, 1990

    Google Scholar 

  5. Wulfsen I, Meyerhof W, Fehr S, Richter D: Expression patterns of rat somatostatin receptor genes in pre-and postnatal brain and pituitary. J Neurochem 61: 1549–1552, 1993

    Google Scholar 

  6. Lamberts SWJ, Krenning E, Reubi JC: The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12: 450–482, 1991

    Google Scholar 

  7. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S: Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci (Wash.) 89: 251–255, 1992

    Google Scholar 

  8. Yamada Y, Reisine T, Law SF, Ihara Y, Kubota A, Kagimoto S, Seino M, Seino Y, Bell GI, Seino S: Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endocrinol 6: 2136–2142, 1992b

    Google Scholar 

  9. Rohrer L, Raulf F, Bruns C, Buettner R, Hofstaedter F, Schüle R: Cloning and characterization of a fourth human somatostatin receptor. Proc Natl Acad Sci (Wash.) 90: 4196–4200, 1993

    Google Scholar 

  10. Yamada Y, Kagimoto S, Kubota A, Yasuda K, Masuda K, Someya Y, Ihara Y, Li Q, Imura H, Seino S, Seino Y: Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype. Biochem Biophys Res Comm 195: 844–852, 1993

    Google Scholar 

  11. Reubi JC, Krenning E, Lamberts SWJ, Kvols L: in vitrodetection of somatostatin receptors in human tumors. Digestion 54 (suppl 1): 76–83, 1993

    Google Scholar 

  12. Longnecker SM: Somatostatin and octreotide: literature review and description of therapeutic activity in pancreatic neoplasia. Drug Intell Clin Pharm 22: 99–106, 1988

    Google Scholar 

  13. Lamberts SWJ: The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocrinol Rev 9: 417–436, 1988

    Google Scholar 

  14. Debas HT, Gittes G: Somatostatin analogue therapy in functioning neuroendocrine gut tumors. Digestion 54 (suppl 1): 68–71, 1993

    Google Scholar 

  15. Reubi JC, Lang W, Maurer R, Koper JW, Lamberts SWJ: Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res 47: 5758–5764, 1987

    Google Scholar 

  16. Reubi JC, Horisberger U, Lang W, Koper JW, Braakman R, Lamberts SWJ: Co-incidence of EGF receptors and somatostatin receptors in meningiomas but inverse, differentiation-dependent relationship in glial tumors. Am J Pathol 134: 337–344, 1989

    Google Scholar 

  17. Haldemann AR, Rösler H, Barth A, Waser B, Geiger L, Godoy N, Markwalder RV, Seiler RW, Sulzer M, Reubi JC: Somatostatin receptor scintigraphy in central nervous system tumors: role of blood-brain barrier permeability. J Nucl Med 36: 403–410, 1995

    Google Scholar 

  18. Hildebrandt G, Scheidhauer K, Luyken C, Schicha H, Klug N, Dahms P, Krisch B: High sensitivity of the in vivodetection of somatostatin receptors by 111Indium (DTPA-octreotide)-scintigraphy in meningioma patients. Acta Neurochir 126: 63–71, 1994

    Google Scholar 

  19. Luyken C, Hildebrandt G, Scheidhauer K, Krisch B, Schicha H, Klug N: 111Indium (DTPA-Octreotide) scintigraphy in patients with cerebral gliomas. Acta Neurochir 127: 60–64, 1994

    Google Scholar 

  20. Krenning EP, Kooij PP, Bakker WH, Breeman WA, Postema PT, Kwekkeboom DJ, Oei HY, de Jong M, Visser TJ, Reijs AE, Lamberts SWJ: Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann NY Acad Sci 733: 496–506, 1994

    Google Scholar 

  21. Pinski J, Schally AV, Halmos G, Szepeshazi K, Groot K: Somatostatin analogues and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of human glioblastoma in vitroand in vivo. Cancer Res 54: 5895–5901, 1994

    Google Scholar 

  22. Schally AV, Huang W-Y, Chang RCC, Arimura A, Redding TW, Millar RP, Hunkapiller MW, Hood LE: Isolation and structure of pro-somatostatin: a putative somatostatin precursor from pig hypothalamus. Proc Natl Acad Sci 77: 4489–4493, 1980

    Google Scholar 

  23. Patel YC, Srikant CB: Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology 135: 2814–2817, 1994

    Google Scholar 

  24. Hoyer D, Lübbert H, Bruns C: Molecular pharmacology of somatostatin receptors. Arch Pharmacol 350: 441–453, 1994

    Google Scholar 

  25. Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB: All five human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem Biophys Res Comm 198: 605–612, 1994

    Google Scholar 

  26. Buscail L, Delesque N, Esteve J-P, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV, Vaysse N, Susini C: Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 91: 2315–2319, 1994

    Google Scholar 

  27. Liebow C, Reilly C, Serrano M, Schally AV: Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc Natl Acad Sci USA 86: 2003–2007, 1989

    Google Scholar 

  28. Buscail L, Estève J-P, Saint-Laurent N, Bertrand V, Reisine T, O’Carrol A-M, Bell GI, Schally AV, Vaysse N, Susini C: Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc Natl Acad Sci 92: 1580–1584, 1995

    Google Scholar 

  29. Anker L, Ohgaki H, Ludeke BI, Herrmann H-D, Kleihues P, Westphal M: p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer 55: 982–987, 1993

    Google Scholar 

  30. Hamel W, Westphal M, Shepard HM: Proto-oncogene expression in human glioma derived cell lines. Int J Oncol 1: 673–682, 1992

    Google Scholar 

  31. Epelbaum J, Bertherat J, Prevost G, Kordon C, Meyerhof W, Wulfsen I, Richter D, Plouin PF: Molecular and pharmacological characterization of somatostatin receptor subtypes in adrenal, extraadrenal, and malignant phaeochromocytomas. J Clin Endocr Metab, in press

  32. Meyerhof W, Hamm B, Schönrock C, Fehr S, Wulfsen I, Richter D: Functional characterization and differential expression of a human adenosine A3 receptor and rat somatostatin receptor subtypes. In: Rosselin G (ed) Vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and related regulatory peptides. World Scientific, Singapore 203–218, 1994

    Google Scholar 

  33. Kluxen FW, Bruns C, Luebbert H: Expression cloning of a rat brain somatostatin receptor cDNA. Proc Natl Acad Sci (Wash) 89: 4618–4622, 1992

    Google Scholar 

  34. Le Romancer M, Reyl-Desmars F, Cherifi Y, Pigeon C, Bottari S, Meyer O, Lewin MJM: The 86-kDa subunit of autoantigen Ku is a somatostatin receptor regulating protein phosphatase-2a activity. J Biol Chem 269: 17464–17468, 1994

    Google Scholar 

  35. Becker I, Feindt J, Heinz C, Krisch B, Mentlein R: Somatostatin receptor subtypes on astrocytes and astrocytomas. Jahrestagung der Studiengruppe Neurochemie der Gesellschaft für Biologische Chemie, 4.10.–5.10.94, Berlin, abstract, 1994

  36. Taylor JE, Bogden AE, Moreau J-P, Coy DH: In vitroand in vivoinhibition of human small cell lung carcinoma (NCIH69) growth by a somatostatin analogue. Biochem Biophys Res Comm 153: 81–86, 1988

    Google Scholar 

  37. Koper JW, Markstein R, Kohler C, Kwekkeboom DJ, Avezaat CJJ, Lamberts SWJ, Reubi JC: Somatostatin inhibits the activity of adenylate cyclase in cultured human meningioma cells and stimulates their growth. J Clin Endocrinol Metabol 74: 543–547, 1992

    Google Scholar 

  38. Eden PA, Taylor JE: Somatostatin receptor subtype gene expression in human and rodent tumors. Life Sci 53: 85–90, 1993

    Google Scholar 

  39. Reubi JC, Schaer JC, Waser B, Mengod G: Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situhybridization. Cancer Res 54: 3455–3459, 1994

    Google Scholar 

  40. Seytyono-Han B, Henkelman MS, Foekens JA, Klijn JGM: Direct inhibitory effects of somatostatin (analogues) on the growth of human breast cancer cells. Cancer Res 47: 1566–1570, 1987

    Google Scholar 

  41. Mascardo RN, Sherline P: Somatostatin inhibits rapid centrosomal separation and cell proliferation induced by epidermal growth factor. Endocrinology 111: 1394–1396, 1982

    Google Scholar 

  42. Meyerhof W, Wulfsen I, Schönrock C, Fehr S, Richter D: Molecular cloning of a somatostatin-28 receptor and comparison of its expression pattern with that of a somatostatin-14 receptor in rat brain. Proc Natl Acad Sci USA 89: 10267–10271, 1992

    Google Scholar 

  43. Evans T, McCarthy KD, Harden TK: Regulation of cyclic AMP accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells. J Neurochem 43: 131–138, 1984

    Google Scholar 

  44. Westphal M, Nausch H, Herrmann H-D: Antigenic staining patterns of human glioma culture: primary cultures, longterm cultures and cell lines. J Neurocytol 19: 466–477, 1990

    Google Scholar 

  45. Westphal M, Haensel M, Hamel W, Kunzmann R, Hoelze F: Karyotype analysis of 20 human glioma cell lines. Acta Neurochir 126: 17–26, 1994

    Google Scholar 

  46. Hoesli L, Hoesli E, Winter T, Stauffer S: Coexistence of cholinergic and somatostatin receptors on astrocytes of rat CNS. NeuroReport 5: 1469–1472, 1994

    Google Scholar 

  47. Krisch B, Mentlein R: Neuropeptide receptors and astrocytes. Int Rev Cytol 148: 119–169, 1994

    Google Scholar 

  48. Lamberts SWJ, Reubi JC, Krenning EP: Somatostatin receptor imaging in the diagnosis and treatment of neuroendocrine tumors. J Steroid Biochem Mol Biol 43: 185–188, 1992

    Google Scholar 

  49. Reubi JC: A somatostatin analogue inhibits chondrosarcoma and insulinoma tumor growth. Acta Endocrinol 109: 108–114, 1985

    Google Scholar 

  50. Moertel CL, Reubi JC, Scheithauer BS, Schaid DJ, Kvols LK: Expression of somatostatin receptors in childhood neuroblastoma. Am J Clin Pathol 102: 752–756, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamszus, K., Meyerhof, W. & Westphal, M. Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas. J Neurooncol 35, 353–364 (1997). https://doi.org/10.1023/A:1005893223090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005893223090

Navigation