Skip to main content
Log in

The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The seed storage proteins of Coix, sorghum and maize are codified by homologous genes which are coordinately expressed in the endosperm in a temporal-specific fashion. Opaque2 (O2), a bZIP protein originally isolated from maize, has been described as a transcription activator of α- and β-prolamin genes. The isolation and characterization of cDNA and genomic clones encoding the Opaque2 homologue from Coix are reported here. The coding region of the Coix O2 gene is interrupted by five introns and codifies a polypeptide of 408 amino acids. Comparison of the deduced amino acid sequence with two different sequences of maize O2 protein showed that the Coix O2 protein is similar to the maize O2 isolated from W22 maize inbred line. The Coix O2 protein has the same binding specificity and expression pattern of the maize O2. The O2 proteins together with OHP1, OsBZIPPA, SPA, CPRF2 and RITA1 were assigned to one of the five bZIP plant families in an updated classification of plant bZIP according to bZIP domain similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeschbacher RA, Schrott M, Potrykus I, Saul MW: Isolation and molecular characterization of PosF21, an Arabidopsis thaliana gene which shows characteristics of a b-ZIP class transcription factor. Plant J 1: 303–316 (1991).

    PubMed  Google Scholar 

  2. Aguan K, Sugawara K, Suzuki N, Kusano T: Isolation of genes for low-temperature-induced proteins in rice by simple subtractive method. Plant Cell Physiol 32: 1285–1289 (1991).

    Google Scholar 

  3. Aguan K, Sugawara K, Suzuki N, Kusano T: Low-temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol Gen Genet 240: 1–8 (1993).

    PubMed  Google Scholar 

  4. Albani D, Hammond-Kosack MCU, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW: The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9: 171–184 (1996).

    Google Scholar 

  5. Brochetto-Braga MR, Leite A, Arruda P: Partial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperm. Plant Physiol 98: 1139–1147 (1992).

    Google Scholar 

  6. Bucher P: Weight matrix descriptions of four eukaryotic polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212: 563–578 (1990).

    PubMed  Google Scholar 

  7. Ciceri P, Gianazza E, Lazzari B, Lippoli G, Genga A, Hoschek G, Schmidt RJ, Viotti A: Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell 9: 97–108 (1997).

    PubMed  Google Scholar 

  8. Clayton WD: Notes on tribe Andropogoneae (Gramineae). Kew Bull 35: 813–818 (1983).

    Google Scholar 

  9. Cord Neto G, Yunes JA, da Silva MJ, Vettore AL, Arruda P, Leite A: The involvement of Opaque 2 in β-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator. Plant Mol Biol 27: 1015–1029 (1995).

    PubMed  Google Scholar 

  10. Dalby A, Davies I: Ribonuclease activity in developing seeds of normal and Opaque 2 maize. Science 155: 1573–1575 (1967).

    PubMed  Google Scholar 

  11. Felsenstein J: PHYLIP (Phylogeny Interference Package) version 3._5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA (1993).

    Google Scholar 

  12. Feltkamp D, Masterson R, Starke J, Rosahl S: Analysis of the involvement of ocs-like bZIP-binding elements in the differential strength of the bidirectional mas1′2′ promoter. Plant Physiol 105: 259–268 (1994).

    PubMed  Google Scholar 

  13. Foster R, Izawa T, Chua N-H: Plant bZIP proteins gather at ACGT elements. FASEB J 8: 192–200 (1994).

    PubMed  Google Scholar 

  14. Gallusci P, Varott S, Matsuoko M, Maddaloni M, Thompson RD: Regulation of cytosolic pyruvate,orthophosphate dikinase expression in developing maize endosperm. Plant Mol Biol 31: 45–55 (1996).

    PubMed  Google Scholar 

  15. Giroux MJ, Boyer C, Fleix G, Hannah C: Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol 106: 713–722 (1994).

    PubMed  Google Scholar 

  16. Hartings H, Maddaloni M, Lazzaroni N, Di Fonzo N, Motto M, Salamini F, Thompson R: The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J 8: 2795–2801 (1989).

    PubMed  Google Scholar 

  17. Hodges R, Sodak J, Smillie L, Jurasek L: Tropomyosin: amino acid sequence and coiled-coil structure. Cold Spring Harbor Symp Quant Biol 37: 299–310 (1972).

    Google Scholar 

  18. Hong JC, Cheong YH, Nagao RT, Bahk JD, Key JL, Cho MJ: Isolation of two soybean G-box binding factors which interact with a G-box sequence of an auxin-responsive gene. Plant J 8: 199–211 (1995).

    PubMed  Google Scholar 

  19. Hurst HC: Transcription factors 1: bZIP proteins. Protein Pro-file 1: 125–134 (1994).

    Google Scholar 

  20. Isawa T, Foster R, Nakajima M, Shimamoto K, Chua N-H: The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6: 1277–1287 (1994).

    PubMed  Google Scholar 

  21. Izawa T, Foster R, Chua N-H: Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131 (1993).

    Article  PubMed  Google Scholar 

  22. Johnson PF: Identification of C/EBP basic region residues involved in DNA sequence recognition and half-site spacing preference. Mol Cell Biol 13: 6919–6930 (1993).

    PubMed  Google Scholar 

  23. Katagiri F, Seipel K, Chua N-H: Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol Cell Biol 12: 4809–4816 (1992).

    PubMed  Google Scholar 

  24. Klimczak LJ, Schindler U, Cashmore AR: DNA binding activity of the Arabidopsis G-bos binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell 4: 87–98 (1992).

    Google Scholar 

  25. Kodrzyck R, Boston RS, Larkins BA: The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1: 105–114 (1989).

    Article  PubMed  Google Scholar 

  26. Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K: A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248: 507–517 (1995).

    PubMed  Google Scholar 

  27. Leite A, Ottoboni LMM, Targon MLPN, Silva MJ, Turcinelli SR, Arruda P: Phylogenetic relationship of zeins and coixins as determined by immunological cross-reactivity and Southern blot analysis. Plant Mol Biol 14: 743–751 (1990).

    PubMed  Google Scholar 

  28. Lohmer S, Maddaloni M, Motto M, Di Fonzo N, Hartings H, Salamini F, Thompson RD: The maize regulatory locus opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J 10: 617–624 (1991).

    PubMed  Google Scholar 

  29. Lupas A: Prediction and analysis of coiled-coil structures. Meth Enzymol 266: 513–525 (1996).

    PubMed  Google Scholar 

  30. Meier I, Guissem W: Novel conserved sequence motifs in plant G-box binding proteins and implications for interactive domains. Nucl Acids Res 22: 470–478 (1994).

    PubMed  Google Scholar 

  31. Meshi T, Iwabuchi M: Plant transcription factors. Plant Cell Physiol 36: 1405–1420 (1995).

    PubMed  Google Scholar 

  32. Miao Z-H, Liu X, Lam E: TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol Biol 25: 1–11 (1994).

    PubMed  Google Scholar 

  33. Mikami K, Sakamoto A, Iwabuchi: The HBP-1 family of wheat basic/leucine zipper proteins interacts with overlapping cisacting hexamer motifs of plant histone genes. J Mol Biol 13: 9974–9985 (1994).

    Google Scholar 

  34. Motto M, Maddaloni M, Ponziani G, Brembilla M, Marotta R, Di Fonzo N, Soave C, Thompson R, Salamini F: Molecular cloning of the o2-m5 allele of Zea mays using transposon marking. Mol Gen Genet 212: 488–504 (1988).

    Article  Google Scholar 

  35. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–507 (1962).

    Google Scholar 

  36. Nakagawa H, Ohmiya K, Hattori T: A rice bZIP protein, designated OSBZ8 is rapidly induced by abscisic acid. Plant J 9: 217–227 (1996).

    PubMed  Google Scholar 

  37. O'Shea EK, Klemm JD, Kim PS, Alber T: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254: 539–544 (1991).

    PubMed  Google Scholar 

  38. Ottoboni LMM, Leite A, Yunes JA, Targon MLPN, Souza Filho GA, Arruda P: Sequence analysis of 22 KDa-like α-coixin genes and their comparison with homologous zein and kafirin genes reveals highly conserved protein structure and regulatory elements. Plant Mol Biol 21: 765–778 (1993).

    PubMed  Google Scholar 

  39. Pater S, Katgiri F, Kijne J, Chua N-H: bZIP proteins bind to a palindromic sequence without an ACGT core located in a seedspecific element of the pea lectin promoter. Plant J 6: 133–140 (1994).

    Article  PubMed  Google Scholar 

  40. Pinna LA: Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054: 267–284 (1990).

    PubMed  Google Scholar 

  41. Pirovano L, Lanzini S, Hartings H, Lazzaroni N, Rossi V, Joshi R, Thompson RD, Salamini F, Motto M: Structural and functional analysis of an opaque-2-related gene from sorghum. Plant Mol Biol 24: 515–523 (1994).

    PubMed  Google Scholar 

  42. Prescott A, Martin C: Rapid method for quantitative assessment of levels of specific mRNAs. Plant Mol Biol Rep 4: 219–224 (1987).

    Google Scholar 

  43. Pysh LD, Aukerman MJ, Schmidt, RJ: OHP1: a maize basic domain/leucine zipper protein that interacts with Opaque2. Plant Cell 5: 227–236 (1993).

    PubMed  Google Scholar 

  44. Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and MatInspector: new fast and versatile tools for detection of concensus matches in nucleotide sequence data. Nucl Acids Res 23: 4878–4884 (1995).

    PubMed  Google Scholar 

  45. Rechsteiner M, Rogers SW: PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267–271 (1996).

    PubMed  Google Scholar 

  46. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  47. Schindler U, Beckmann H, Cashmore AR: TGA1 and G-box binding factors: two distinct classes of Arabdopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4: 1309–1319 (1992).

    Article  PubMed  Google Scholar 

  48. Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR: Heterodimerization between light-regulated and ubiquitously expressed Arabdopsis GBF bZIP proteins. EMBO J 11: 1261–1273 (1992).

    PubMed  Google Scholar 

  49. Schmidt RJ, Burr FA, Burr B: Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238: 960–963 (1987).

    PubMed  Google Scholar 

  50. Schmidt RJ, Burr FA, Aukerman MJ, Burr B: Maize regulatory gene opaque-2 encodes a protein with a ‘leucine zipper’ motif that binds to zein DNA. Proc Natl Acad Sci USA 87: 46–50 (1990).

    PubMed  Google Scholar 

  51. Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G: Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4: 689–700 (1992).

    Article  PubMed  Google Scholar 

  52. Schmidt RJ: Opaque-2 and zein gene expression. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 337–355. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  53. Siegel LI, Bresnick E: Northern hybridization analysis of RNA using diethylpyrocarbonate-treated nonfatmilk. Anal Biochem 159: 82–87 (1986).

    PubMed  Google Scholar 

  54. Singh K, Dennis ES, Ellis JG, Llewellyn DJ, Tokuhisa JG, Wahleithner JA, Peacock J: OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell 2: 891–903 (1990).

    Article  PubMed  Google Scholar 

  55. Staden R: An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucl Acids Res 10: 2951–2961 (1982).

    PubMed  Google Scholar 

  56. Suckow M, Schwamborn K, Kisters-Woike B, Wilcken-Bergmann B, Müller-Hill B: Replacement of invariant bZIP residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucl Acids Res 21: 4395–4404 (1994).

    Google Scholar 

  57. Suckow M, Wilckern-Bergmann B, Müller-Hill B: Identification of three residues in the basic regions of the bZIP protein GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J 12: 1193–1200 (1993).

    PubMed  Google Scholar 

  58. Targon MLN, Ottoboni LMM, Leite A, Ludevid D, Puigdoménech P, Arruda P: Synthesis and deposition of coixin in seeds of Coix lacryma-jobi. Plant Sci 83: 169–180 (1992).

    Google Scholar 

  59. Thompson JD, Higgins DG, Gibson, TJ: CLUSTAL W: improving of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680 (1994).

    PubMed  Google Scholar 

  60. Torres-Schumann S, Ringli C, Heierli D, Amrhein N, Keller B: In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylen-specific gene expression. Plant J 9: 283–296 (1996).

    PubMed  Google Scholar 

  61. Weisshaar B, Armstrong GA, Block A, da Costa e Silva O, Hahlbrock K: Light-inducible and constitutively DNA-binding proteins recognizing a plant promoter element with functional revelance in light responsiveness. EMBO J 10: 1777–1786 (1991).

    PubMed  Google Scholar 

  62. Wilson CM, Alexander DE: Ribonuclease activity in normal and opaque2 mutant endosperm of maize. Science 155: 1575–1576 (1967).

    PubMed  Google Scholar 

  63. Yunes JA, Cord Neto G, Leite A, Ottoboni LM, Arruda P: The role of the opaque2 transcriptional factor in the regulation of protein accumulation and amino acid metabolism in maize seeds. An Acad Bras Ci 66: 227–238 (1994).

    Google Scholar 

  64. Yunes JA, Cord Neto G, Silva JM, Leite A, Ottoboni LMM, Arruda P: The transcriptional activator Opaque2 recognize two different target sequences in the 22-kD-like α-prolamin genes. Plant Cell 6: 237–250 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vettore, A.L., Yunes, J.A., Cord Neto, G. et al. The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins. Plant Mol Biol 36, 249–263 (1998). https://doi.org/10.1023/A:1005995806897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005995806897

Navigation