Skip to main content
Log in

The 26S proteasome: subunits and functions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coux O, Tanaka K & Goldberg AL (1996) Annu. Rev. Biochem. 65: 801–847

    Google Scholar 

  2. Hochstrasser, M (1997) Annu. Rev. Gent. 30: 405–439

    Google Scholar 

  3. Tanaka K, Yoshimura T, Ichihara A, Kameyama K & Takagi T (1986) J. Biol. Chem. 261: 15 204–15 207

    Google Scholar 

  4. Tanaka K, Yoshimura T, Ichihara A, Ikai A, Nishigai M, Morimoto M, Sato M, Tanaka N, Katsube Y, Kameyama K & Takagi T (1988) J. Mol. Biol. 203: 985–996

    Google Scholar 

  5. Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K & Ichihara A. (1993) J. Struct. Biol. 111: 200–211

    Google Scholar 

  6. Peters J—M (1994) Trends Biochem. Sci. 19: 377–382

    Google Scholar 

  7. Lupas A, Koster AJ & Baumeister W (1993) Enzyme Protein 47: 252–273

    Google Scholar 

  8. Tanaka K (1995) Mol. Biol. Rep. 21: 21–26

    Google Scholar 

  9. Scherrer K & Bey F (1994) Proc. Nucl. Acid Res. Mol. Biol. 49: 1–64

    Google Scholar 

  10. Hilt W & Wolf DH (1995) Trends Biochem. Sci. 21: 96–102

    Google Scholar 

  11. Monaco JJ & Nandi D (1995) Annu. Rev. Genet. 29: 729–754

    Google Scholar 

  12. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka A, Nothwang HG, Noda C, Tanaka K & Ichihara A. (1994) Science 265: 1231–1234

    Google Scholar 

  13. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi E, Tanahasi N, Tamura T, Ichihara A & Tanaka K (1996) J. Exp. Med. 183: 1807–1816

    Google Scholar 

  14. Belich MP, Glynne RJ, Senger G, Sheer D & Trowsdale J (1994) Curr. Biol. 4: 769–776

    Google Scholar 

  15. Früh K, Gossen M, Wang K, Bujard H, Peterson PA & Yang Y (1994) EMBO J. 13: 3236–3244

    Google Scholar 

  16. Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T & Ishibashi T (1996) Proc. Natl. Acad. Sci. USA 93: 9096–9101

    Google Scholar 

  17. York IA & Rock KL (1996) Annu. Rev. Immunol. 14: 369–397

    Google Scholar 

  18. DeMartino GN & Slaughter CA (1993) Enzyme Protein 47: 314–324

    Google Scholar 

  19. Dubiel W, Ferrell K & Rechsteiner M (1995) Mol. Biol. Rep. 21: 27–34

    Google Scholar 

  20. DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma C—P, Afendis SJ, Swaffield JC & Slaughter CA (1994) J. Biol. Chem. 269: 20 878–20 884

    Google Scholar 

  21. Walker JE, Saraste MJ, Runswick JJ & Gay NL (1982) EMBO J. 1: 945–951

    Google Scholar 

  22. Confalonieri F & Duguet M (1995) BioEssays 17: 639–650

    Google Scholar 

  23. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362

    Google Scholar 

  24. Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 3655–3657

    Google Scholar 

  25. Akiyama K, Yokota K, Kagawa S, Shimbara N, Slaughter CA, Moomaw CR, DeMartino GN & Tanaka K (1995) FEBS Lett. 363: 151–156

    Google Scholar 

  26. Fujiwara T, Watanabe T, Tanaka K, Slaughter CA & DeMartino GN (1996) FEBS Lett. 387: 184–188

    Google Scholar 

  27. Lee JW, Ryan F, Swaffield JC, Johnston SA & Moore DD (1995) Nature 374: 91–94

    Google Scholar 

  28. Baur E vom, Zechel C, Heery D, Heine MJS, Garnier JM, Vivat V, Douarin BL, Gronemeyer H & Chambon P (1996) EMBO J. 15: 110–124

    Google Scholar 

  29. Kominami K, DeMartino GN, Moomaw CR, Slaughter CA, Shimbara N, Fujimuro M, Yokosawa H, Hisamatsu H, Tanahashi N, Shimizu Y, Tanaka K & Toh—e A (1995) EMBO J. 14: 3105–3115

    Google Scholar 

  30. DeMarini DJ, Papa FR, Swaminathan S, Ursic D, Rasmussen TP, Culbertson MR & Hochstrasser M (1995) Mol. Cell Biol. 15: 6311–6321

    Google Scholar 

  31. Yokota K, Kagawa S, Shimizu Y, Akioka H, Tsurumi C, Noda C, Fujimuro M, Yokosawa H, Fujiwara T, Takahashi E, Ohba M, Yamasaki M, DeMartino GN, Slaughter CA, Toh—e A & Tanaka K. (1996) Mol. Biol. Cell 7: 853–870

    Google Scholar 

  32. Tsurumi C, Shimizu Y, Saeki M, Sato S, DeMartino GN, Slaughter CA, Fujimuro M, Yokosawa H, Yamasaki M, Hendil KB, Toh—e A, Tanahashi N & Tanaka K (1996) Eur. J. Biochem. 239: 912–921

    Google Scholar 

  33. Tsurumi C, DeMartino GN, Slaughter CA, Shimbara N & Tanaka K(1995) Biochem. Biophys. Res. Commun. 210: 600–608

    Google Scholar 

  34. Gridley T, Jaenisch R & Gendron—Maguire M (1991) Genomics 11: 501–507

    Google Scholar 

  35. Ferrell K, Deveraux Q, van Nocker S & Rechsteiner M (1996) FEBS Lett. 381: 143–148

    Google Scholar 

  36. Deveraux Q, van Nocker S, Mahaffey D, Vierstra R & Rechsteiner M (1995) J. Biol. Chem. 270: 29 660–29 663

    Google Scholar 

  37. van Nocker S, Deveraux Q, Rechsteiner M & Vierstra R (1996) Proc. Natl. Acad. Sci. USA 93: 856–860

    Google Scholar 

  38. Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara S, Chung CH, Shimizu Y, Tanahashi N, Tanaka K & Toh—e A (1997) Mol. Biol. Cell (in press)

  39. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell Biol. 16: 6020–6028.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Tsurumi, C. The 26S proteasome: subunits and functions. Mol Biol Rep 24, 3–11 (1997). https://doi.org/10.1023/A:1006876904158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006876904158

Navigation