Skip to main content
Log in

Microtubule alterations in cultured taiep rat oligodendrocytes lead to deficits in myelin membrane formation

  • Published:
Journal of Neurocytology

Abstract

The taiep rat is a myelin mutant in which hypomyelination and progressive demyelination of the CNS are accompanied by an accumulation of microtubules within oligodendrocytes. To investigate whether and how the myelin defects were caused by microtubule abnormalities, we have established a taiep oligodendrocyte culture system in which mutant cells produce abnormally high levels of tubulin and microtubule-associated proteins and exhibit myelin defects. The studies show that abnormal microtubule accumulation and tight microtubule bundles developed in the taiep oligodendrocytes, with a higher ratio of minus-end-distal to plus-end-distal microtubules in their processes. Initially, in culture, immature taiep oligodendrocytes which have higher levels of tubulin than controls extend roughly twice as much membrane sheet as controls. The membrane sheets of the mature taiep oligodendrocytes which display the microtubule accumulation, however, grew much less rapidly compared to controls. By the fifth day in culture, a majority of the taiep oligodendrocytes had ceased the expansion of their membrane sheets and in some cases the sheets retracted. The levels of the myelin proteins, proteolipid protein and myelin-associated glycoprotein, were also markedly diminished in the mature taiep oligodendrocytes. Treatment with the microtubule depolymerizing drug nocodazole prevented not only the accumulation of microtubules but also restored the normal distribution of proteolipid proteins within the taiep oligodendrocytes. These data demonstrate that myelin synthesis in the oligodendrocyte cultures relies on the formation of a normal microtubule array, and the microtubule abnormalities are directly responsible for the myelin deficit in the taiep oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainger, K., Avossa, D., Morgan, F., Hill, S. J., Barry, C., Barbarese, E. & Carson, J. H. (1993) Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. Journal of Cell Biology 123, 431–441.

    Google Scholar 

  • Baas, P. W., Slaughter, T., Brown, A. & Black, M. M. (1991) Microtubule dynamics in axons and dendrites. Journal of Neuroscience Research 30, 134–153.

    Google Scholar 

  • Bansal, R., Stefansson, K. & Pfeiffer, S. E. (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. Journal of Neurochemistry 58, 2221–2229.

    Google Scholar 

  • Barry, C., Pearson, C. & Barbarese, E. (1996) Morphological organization of oligodendrocyte processes during development in culture and in vivo. Developmental Neuroscience 18, 233–242.

    Google Scholar 

  • Benjamins, J. A. & Nedelkoska, L. (1994) Maintenance of membrane sheets by cultured oligodendrocytes requires continuous microtubule turnover and Golgi transport. Neurochemical Research 19, 631–639.

    Google Scholar 

  • Bizzozero, O. A., Pasquini, J. M. & Soto, E. F. (1982) Differential effect of colchicine upon the entry of proteins into myelin and myelin related membranes. Neurochemical Research 7, 1415–1425.

    Google Scholar 

  • Black, M. M. & Baas, P. W. (1989) The basis of polarity in the neuron. Trends in Neuroscience 12, 211–214.

    Google Scholar 

  • Bloom, G. S., Schoenfeld, T. A. & Vallee, R. B. (1984) Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system. Journal of Cell Biology 98, 320–330.

    Google Scholar 

  • Bre, M. H. & Karsenti, E. (1990) Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes. Cell Motility & the Cytoskeleton 15, 88–98.

    Google Scholar 

  • Brophy, P. J., Boccaccio, G. L. & Colman, D. R. (1993) The distribution of myelin basic protein mRNAs within myelinating oligodendrocytes. Trends in Neuroscience 16, 515–521.

    Google Scholar 

  • Brown, P. A. & Berlin, R. D. (1988) Factors that determine the spacing between microtubules: their possible role in cytoarchitecure. In Intrinsic Determinants of Neuronal Form and Function (edited by Lasek, R. J. & Black, M. M.), pp. 307–321. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Campagnoni, A. T. (1995) Molecular biology of myelination. In Neuroglia (edited by Kettenmann, H. & Ransom, B. R.), pp. 950–963. New York: Oxford University Press.

    Google Scholar 

  • Carson, J. H., Kwon, S. & Barbarese, E. (1998)RNA trafficking in myelinating cells. Current Opinion in Neurobiology 8, 607–612.

    Google Scholar 

  • Carson, J. H., Worboys, K., Ainger, K. & Barbarese, E. (1997) Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motility & the Cytoskeleton 38, 318–328.

    Google Scholar 

  • Couve, E., Cabello, J. F., Krsulovic, J. & Roncagliolo, M. (1997) Binding of microtubules to transitional elements in oligodendrocytes of the myelin mutant taiep rat. Journal of Neuroscience Research 47, 573–581.

    Google Scholar 

  • Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. (1992) Modulation of the dynamic instability of tubulin assembly by the microtubuleassociated protein tau. Molecular Biology of the Cell 3, 1141–1154.

    Google Scholar 

  • Duncan, I. D. (1995) Inherited disorders of myelination of the central nervous system. In Neuroglia (edited by Kettenmann, H. & Ransom, B. R), pp. 990–1009. New York: Oxford University Press.

    Google Scholar 

  • Duncan, I. D., Lunn, K. F., Holmgren, B., Urbaholmgren, R. & BrignolO-holmes, L. (1992) The taiep rat: a myelin mutant with an associated oligodendrocyte microtubular defect. Journal of Neurocytology 21, 870–884.

    Google Scholar 

  • Fischer, I., Konola, J. & Cochary, E. (1990) Microtubule associated protein (MAP1B) is present in cultured oligodendrocytes and co-localizes with tubulin. Journal of Neuroscience Research 27, 112–124.

    Google Scholar 

  • Griffiths, I., Klugmann, M., Andreson, T., Thomson, C., Vouyiouklis, D. & Nave, K. A. (1998) Current concepts of PLP and its role in the nervous system. Microscopy Research and Technique 41, 344–358.

    Google Scholar 

  • Holmgren, B., UrbA-holmgren, R., Riboni, L. & VegA-saenzdemiera, E. C. (1989) Sprague dawley rat mutant with tremor, ataxia, tonic immobility episodes, epilepsy and paralysis. Laboratory Animal Science 39, 226–228

    Google Scholar 

  • Kachar, B., Behar, T. & DuboiS-dalcq, M. (1986) Cell shape and motility of oligodendrocytes cultured without neurons. Cell & Tissue Research 244, 27–38.

    Google Scholar 

  • Kalwy, S. A. & Smith, R. (1994) Mechanisms of myelin basic protein and proteolipid protein targeting in oligodendrocytes (review). Molecular Membrane Biology 11, 67–78.

    Google Scholar 

  • Klopfenstein, D. R. C., Kappeler, F. & Hauri, H. P. (1998) A novel direct interaction of endoplasmic reticulum with microtubules. EMBO Journal 17, 6168– 6177.

    Google Scholar 

  • Lopresti, P., Szuchet, S., Papasozomenos, S. C., Zinkowski, R. P. & Binder, L. I. (1995) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proceedings of the National Academy of Sciences USA 92, 10369–10373.

    Google Scholar 

  • Lunn, K. F., Baas, P. W. & Duncan, I. D. (1997a) Microtubule organization and stability in the oligodendrocyte. Journal of Neuroscience 17, 4921–4932.

    Google Scholar 

  • Lunn, K. F., Clayton, M. K. & Duncan, I. D (1997b) The temporal progression of the myelination defect in the taiep rat. Journal of Neurocytology 26, 267–281.

    Google Scholar 

  • Moller, J. R., Durr, P. G., Quarles, R. H. & Duncan, I. D. (1997) Biochemical analysis of myelin proteins in a novel neurological mutant: the taiep rat. Journal of Neurochemistry 69, 773–779.

    Google Scholar 

  • Muller, R., Heinrich, M., Heck, S., Blohm, D. & RichteR-landsberg, C. (1997) Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell & Tissue Research 288, 239–249.

    Google Scholar 

  • Newman, S., Saito, M. & Yu, R. K. (1995) Biochemistry of myelin proteins and enzymes. In Neuroglia (edited by Kettenmann, H. & Ransom, B. R.), pp. 535–554. New York: Oxford University Press.

    Google Scholar 

  • Oõconnor, L. T., Goetz, B. D. & Duncan, I. D. (1998) Intracellular transport of myelin components is altered in oligodendrocytes from the taiep rat. Society For Neuroscience Abstracts.

  • Olmsted, J. B. (1986) Microtubule-associated proteins. Annual Review of Cell Biology 2, 421–457.

    Google Scholar 

  • Pryer, N. K., Walker, R. A., Skeen, V. P., Bourns, B. D., Soboeiro, M. F. & Salmon, E. D. (1992) Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. Journal of Cell Science 103, 965–976.

    Google Scholar 

  • Sato, C., Schriftman, M. & Larocca, J. N. (1986) Transport of sulfatides towards myelin. Effect of colchicine, monensin and calcium on their intracellular traslocation. Neurochemistry International 9, 265–271.

    Google Scholar 

  • Sharp, D. J., Yu, W. & Baas, P. W. (1995) Transport of dendritic microtubules establishes their nonuniform polarity orientation. Journal of Cell Biology 130, 93–103.

    Google Scholar 

  • Snipes, G. J., Suter, U. & Shooter, E. M. (1993) The genetics of myelin. Current Opinion in Neurobiology 3, 694–702.

    Google Scholar 

  • Sommer, I. & Schachner, M. (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Developmental Biology 83, 311–327.

    Google Scholar 

  • Trapp, B. D. (1990) Distribution of myelin protein gene products in actively-myelinating oligodendrocytes. In Cellular and Molecular Biology of Myelination (edited by Jeserich, G.), pp. 59–79. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Trapp, B. D., Andrews, S. B., Cootauco, C. & Quarles, R. (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. Journal of Cell Biology 109, 2417–2426.

    Google Scholar 

  • Vouyiouklis, D. A. & Brophy, P. J. (1993) Microtubule-associated protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. Journal of Neuroscience Research 35, 257–267.

    Google Scholar 

  • Vouyiouklis, D. A. & Brophy, P. J (1995) Microtubuleassociated proteins in developing oligodendrocytesÑ transient Expression of a Map2c isoform in oligodendrocyte precursors. Journal of Neuroscience Research 42, 803–817.

    Google Scholar 

  • Wilson, R. & Brophy, P. J. (1989) Role for the oligodendrocyte cytoskeleton in myelination. Journal of Neuroscience Research 22, 439–448.

    Google Scholar 

  • Yu, W. & Baas, P. W. (1994) Changes in microtubule number and length during axon differentiation. Journal of Neuroscience 14, 2818–2829.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., O'connor, L., Yu, W. et al. Microtubule alterations in cultured taiep rat oligodendrocytes lead to deficits in myelin membrane formation. J Neurocytol 28, 671–684 (1999). https://doi.org/10.1023/A:1007060832459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007060832459

Keywords

Navigation