Skip to main content
Log in

Glutamate-Glutamine Cycle and Aging in Striatum of the Awake Rat: Effects of a Glutamate Transporter Blocker

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of aging on the actions of a specific glutamate reuptake blocker, L-trans-pyrrolidine-2, 4-dicarboxylic acid (PDC), in extracellular glutamate and glutamine in striatum of the awake rat. Microdialysis experiments were performed on young (2–3 months), middle-aged (12–14 months), aged (27–32 months) and very aged (37 months) male Wistar rats. Local infusion of PDC (1–4 mM) in striatum increased the dialysate concentration of glutamate and decreased dialysate concentration of glutamine in all the age-groups. In young rats, decreases of dialysate glutamine were correlated with increases of dialysate glutamate. The same profile glutamine/glutamate as in young rats was found in middle-aged, aged and very aged rats, which suggests that the action of glutamate on the glutamate-glutamine cycle in striatum of the awake rat is not modified as a consequence of aging. We also found a significant correlation between the increases of glutamate produced by PDC and the basal dialysate concentration of glutamine, a relationship that did show a significant change with age. Although the significance of this latter finding remains to be elucidated, it may be important to understand the changes in glutamate-glutamine cycle during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradford, H. F., Ward, H. K., and Thomas, A. J. 1978. Glutamine: a major substrate for nerve endings. J. Neurochem. 30: 1453–1459.

    PubMed  Google Scholar 

  2. Fonnum, F. 1993. Regulation of the synthesis of the transmitter glutamate pool. Prog. Biophys. Molec. Biol. 60: 47–57.

    Google Scholar 

  3. Bowyer, J. F., Lipe, G. W., Matthews, J. C., Scallet, A. C., and Davies, D. L. 1995. Comparison of glutamine-enhanced glutamate release from slices and primary cultures of rat brain. Ann. NY Acad. Sci. 765: 98–99.

    Google Scholar 

  4. Paulsen, R. E., Contestabile, A., Villani, L., and Fonnum, F. 1987. An in vivo model for studying function of brain tissue temporatily devoid of glial cell metabolism: the use of fluorocitrate. J. Neurochem. 48: 1377–1385.

    PubMed  Google Scholar 

  5. Norenberg, M. D. and Martinez-Hernández, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161: 303–310.

    PubMed  Google Scholar 

  6. Schousboe, A., Westergaard, N., Sonnewald, U., Petersen, S. B., Yu, A. C. H., and Hertz, L. 1992. Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Pages 199–211, in Yu, A. C. H., Hertz, L., Norenberg, M. D., Syková, E., and Waxman, S. G. (eds.), Progress in barin research. Vol. 94. Neuronal-astrocytic interactions. Elsevier, Amsterdam.

    Google Scholar 

  7. Westergaard, N., Sonnewald, U., and Schousboe, A. 1995. Metabolic trafficking between neurons and astrocytes; the glutamate/glutamine cycle revisited. Dev. Neurosci. 17: 203–211.

    PubMed  Google Scholar 

  8. Rothstein, J. D., Dykes-hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. 1996. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686.

    PubMed  Google Scholar 

  9. Pfrieger, F. W. and Barres, B. A. 1996. New views on synapseglia interactions. Curr. Opin. Neurobiol. 6: 615–621.

    PubMed  Google Scholar 

  10. Muñoz, M. D., Herreras, O., Herranz, A. S., Solis, J. M., Martin del Rio, R., and Lerma, J. 1987. Effects of dihydrokainic acid of extracellular amino acids and neuronal excitability in the in vivo rat hippocampus. Neuropharmacology 26: 1–8.

    PubMed  Google Scholar 

  11. Fallgren, A. B. and Paulsen, R. E. 1996. A microdialysis study in rat brain of dihydrokainate, a glutamate uptake inhibitor. Neurochem. Res. 21: 19–25.

    PubMed  Google Scholar 

  12. Massieu, L., Morales-Villagrán, A., and Tapia, R. 1995. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J. Neurochem. 64: 2262–2272.

    PubMed  Google Scholar 

  13. Segovia, G., Del Arco, A., and Mora, F. 1999. Role of glutamate receptors and glutamate transporters in the regulation of the glutamate-glutamine cycle in the awake rat. Neurochem. Res. 24: 779–783.

    PubMed  Google Scholar 

  14. Terry, R. D. 1986. Interrelations among the lesions of normal and abnormal aging of the brain. Pages 41–48. In Swaab, D. F., Fliers, E., Mirmiran, M., Van Gool, W. A., and Van Haaren, F. (eds.), Aging of the brain and Alzheimer's disease. Progress in brain research. Volume 70. Elsevier, Amsterdam.

    Google Scholar 

  15. Vásquez, M. T., Prados, J., Puerta, A. J., and Mora, F. 1992. Increase of astrocyte population in the medial prefrontal cortex of the rat during aging. Eur. J. Neurosci. Supp. 5: 100

    Google Scholar 

  16. Finch, C. E. and Morgan, D. G. 1990. RNA and protein metabolism in the aging brain. Ann. Rev. Neurosci. 13: 75–87.

    PubMed  Google Scholar 

  17. O'Callaghan, J. P. and Miller, D. B. 1991. The concentration of glial fibrillary acidic protein increases with age in the mouse and rat brain. Neurobiol. Aging 12: 171–174.

    PubMed  Google Scholar 

  18. David, J. F., Ghozali, F., Bianco, C. F., Wattez, A., Delaine, S., Boniface, B., Di Menza, C., and Delacourte, A. 1997. Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci. Lett. 235: 53–56.

    PubMed  Google Scholar 

  19. Danh, H. C., Strolin Benedetti, M., and Dostert, P. 1985. Agerelated changes in glutamine synthetase activity of rat brain, liver and heart. Gerontology 31: 95–100.

    PubMed  Google Scholar 

  20. Trabucchi, M., Spano, P. F., Govoni, S., Riccardi, F., and Bosio, A. 1982. Dopaminergic function during aging in rat brain. Pages 195–202, in Giacobini, E., Filogamo, G., Giacobini, G., and Vernadakis, A. (eds.), The aging brain: cellular and molecular mechanisms of aging in the central nervous system. Raven Press, New York.

    Google Scholar 

  21. Wallace, D. R. and Dawson, R. 1993. Regional differences in glutamine activation by phosphate and calcium in rat brain: impairment in aged rats and implications for regional glutaminase isozymes. Neurochem. Res. 18: 1271–1279.

    PubMed  Google Scholar 

  22. Wallace, D. R. and Dawson, R., Jr. 1994. Assessment of regional phosphate-activate glutaminase (PAG) activity and kinetics in adult and aged Fischer-344 rats. Age 17: 59–63.

    Google Scholar 

  23. Segovia, G., Porras, A., and Mora, F. 1997. Effects of 4-aminopyridine on extracellular concentrations of glutamate in striatum of the freely moving rat. Neurochem. Res. 22: 1491–1497.

    PubMed  Google Scholar 

  24. Konig, J. R. F. and Klippel, R. A. 1967. The rat brain. R. E. Krieger Publishing Co., New York.

    Google Scholar 

  25. Segovia, G., Del Arco, A., and Mora, F. 1997. Endogenous glutamate increases extracellular concentrations of dopamine, GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study. J. Neurochem. 69: 1476–1483.

    PubMed  Google Scholar 

  26. Farinelli, E. S. and Nicklas, W. J. 1992. Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58: 1905–1915.

    PubMed  Google Scholar 

  27. Waniewski, R. A. and Martin, D. L. 1986. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47: 304–313.

    PubMed  Google Scholar 

  28. Krespan, B., Berl, S., and Nicklas, W. J. 1982. Alteration in neuronal-glial metabolism of glutamate by the neurotoxin kainic acid. J. Neurochem. 38: 509–518.

    PubMed  Google Scholar 

  29. Segovia, G. and Mora, F. 1998. Role of nitric oxide in modulating the release of dopamine, glutamate, and GABA in striatum of the freely moving rat. Brain Res. Bull. 45: 275–279.

    PubMed  Google Scholar 

  30. Waldmeier, P. C., Wicki, P., and Feldtrauer, J. J. 1993. Release of endogenous glutamate from rat cortical slices in presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid. Naunyn-Schmiedeberg's Arch. Pharmacol. 384: 478–485.

    Google Scholar 

  31. Volterra, A., Bezzi, P., Rizzini, B. L., Trotti, D., Uilensvamg, K., Danbolt, N. C., and Racagni, G. 1996. The competitive transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. Eur. J. Neurosci. 8: 2019–2028.

    PubMed  Google Scholar 

  32. Rauen, T., Jeserich, G., Danbolt, N. C., and Kanner, B. I. 1992. Comparative analysis of sodium-dependent L-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex. FEBS Lett. 312: 15–20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segovia, G., Del Arco, A., Prieto, L. et al. Glutamate-Glutamine Cycle and Aging in Striatum of the Awake Rat: Effects of a Glutamate Transporter Blocker. Neurochem Res 26, 37–41 (2001). https://doi.org/10.1023/A:1007624531077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007624531077

Navigation