Skip to main content
Log in

Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present an accurate and efficient explicit hybrid solver for Maxwell's equations in time domain. The hybrid solver combines FD-TD with an unstructured finite volume solver. The finite volume solver is a generalization of FD-TD to unstructured grids and it uses a third-order staggered Adams–Bashforth scheme for time discretization. A spatial filter of Laplace type is used by the finite volume solver to enable long simulations without suffering from late time instability problems. The numerical examples demonstrate that the hybrid solver is superior to stand-alone FD-TD in terms of accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abenius, E., Andersson, U., Edelvik, F., Eriksson, L., and Ledfelt, G. (2000). Hybrid Time Domain Solvers for the Maxwell Equations in 2D, Technical report 00:01, Parallel and Scientific Computing Institute, KTH, Stockholm, Available at http://www.psci.kth.se/ Activities-Reports/List.html. 77 Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D

  • Andersson, U. (Feb. 2001). Time Domain Methods for the Maxwell Equations, Ph.D. thesis, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Dey, S., and Mittra, R. (1997). A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microwave Guided Wave Lett. 7(9), 273–275.

    Google Scholar 

  • Edelvik, F. (1999). Analysis of a finite volume solver for Maxwell's equations. In Finite Volumes for Complex Applications II, Vilsemeier, R. (ed.), Hermes, Paris, pp. 141–148.

    Google Scholar 

  • Gedney, S. D. (1996). An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16(4), 399–415.

    Google Scholar 

  • Ghrist, M., Driscoll, T. A., and Fornberg, B. (2000). Staggered time integrators for the wave equation. SIAM J. Num. Anal., to appear.

  • Lee J.-F., Lee, R., and Cangellaris, A. (1997). Time-domain finite-element methods. IEEE Trans. Antennas Propagat. 45(3), 430–442.

    Google Scholar 

  • Martin, T. (1998). An improved near-to far-zone transformation for the finite-difference time-domain method. IEEE Trans. Antennas Propagat. 46(9), 1263–1271.

    Google Scholar 

  • Okoniewski, M., Okoniewska, E., and Stuchly, M. A. (1997). Three-dimensional subgridding algorithm for FDTD. IEEE Trans. Antennas Propagat. 45(3), 422–429.

    Google Scholar 

  • Riley, D. J., and Turner, C. D. (1997). VOLMAX: A solid-model-based, transient volumetric Maxwell solver using hybrid grids. IEEE Antennas Propagat. Mag. 39(1), 20–33.

    Google Scholar 

  • Shankar, V., Hall, W. F., and Mohammadian, A. (1989). A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77(5), 709–721.

    Google Scholar 

  • Taflove, A. (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston.

    Google Scholar 

  • Wu, R.-B., and Itoh, T. (1995). Hybridizing FD-TD analysis with unconditionally stable FEM for objects of curved boundary. In IEEE MTT-S Int. Microwave Symp., Orlando, Vol. 2, pp. 833–836.

    Google Scholar 

  • Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat. 14(3), 302–307.

    Google Scholar 

  • Yee, K. S., Chen, J. S., and Chang, A. H. (1992). Conformal finite-difference time-domain (FDTD) with overlapping grids. IEEE Trans. Antennas Propagat. 40(9), 1068–1075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelvik, F., Ledfelt, G. Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D. Journal of Scientific Computing 15, 61–78 (2000). https://doi.org/10.1023/A:1007625629485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007625629485

Navigation