Skip to main content
Log in

Linearised Euclidean Shortening Flow of Curve Geometry

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The geometry of a space curve is described in terms of a Euclidean invariant frame field, metric, connection, torsion and curvature. Here the torsion and curvature of the connection quantify the curve geometry. In order to retain a stable and reproducible description of that geometry, such that it is slightly affected by non-uniform protrusions of the curve, a linearised Euclidean shortening flow is proposed. (Semi)-discretised versions of the flow subsequently physically realise a concise and exact (semi-)discrete curve geometry. Imposing special ordering relations the torsion and curvature in the curve geometry can be retrieved on a multi-scale basis not only for simply closed planar curves but also for open, branching, intersecting and space curves of non-trivial knot type. In the context of the shortening flows we revisit the maximum principle, the semi-group property and the comparison principle normally required in scale-space theories. We show that our linearised flow satisfies an adapted maximum principle, and that its Green's functions possess a semi-group property. We argue that the comparison principle in the case of knots can obstruct topological changes being in contradiction with the required curve simplification principle. Our linearised flow paradigm is not hampered by this drawback; all non-symmetric knots tend to trivial ones being infinitely small circles in a plane. Finally, the differential and integral geometry of the multi-scale representation of the curve geometry under the flow is quantified by endowing the scale-space of curves with an appropriate connection, and calculating related torsion and curvature aspects. This multi-scale modern geometric analysis forms therewith an alternative for curve description methods based on entropy scale-space theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abresch, U. and Langer, J. 1986. The normalized curve shortening flow and homothetic solutions. Journal of Differential Geometry, 23:175–196.

    Google Scholar 

  • Altschuler, S.J. and Grayson, M.A. 1992. Shortening space curves and flow through singularities. Journal of Differential Geometry, 35:283–298.

    Google Scholar 

  • Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M. 1992. Axiomes et équations fondamentales du traitement d'images. C.R. Acad. Sci. Paris, 315:135–138.

    Google Scholar 

  • Alvarez, L. and Morel, J.M. 1994. Formalization and computational aspect of image analysis. Acta Numerica, 3:1–63.

    Google Scholar 

  • Ambrosio, L. and Soner, H.M. 1994. Level set approach to mean curvature flow in arbitray co-dimension. Instituto di Matematiche Applicate “U. Dini”, Pisa, Italy.

    Google Scholar 

  • Angenent, S. 1991a. Parabolic equations for curves on surfaces, Part I: Curves with p-integrable curvature. Annals of Mathematics, 132:451–483.

    Google Scholar 

  • Angenent, S. 1991b. Parabolic equations for curves on surfaces, Part II: Intersections, blowup, and generalized solutions. Annals of Mathematics, 133:171–215.

    Google Scholar 

  • Angenent, S. 1991c. On the formation of singularities in the curve shortening flow. Journal of Differential Geometry, 33:601–633.

    Google Scholar 

  • Angenent, S., Sapiro, G., and Tannenbaum, A. 1998. On the affine heat equation for non-convex curves. Journal of the American Mathematical Society, 11:601–634.

    Google Scholar 

  • Bar-Natan, D. 1995. On the Vassiliev knot invariants. Topology, 34(2):423–472.

    Google Scholar 

  • Blom, J., ter Haar Romeny, B.M., Bel, A., and Koenderink, J.J. 1993. Spatial derivatives and the propagation of noise in Gaussian scale-space. Journal of Visual Communication and Image Representation, 1(4):1–13.

    Google Scholar 

  • Brakke, K.A. 1978. The Motion of a Surface by its Mean Curvature. Princeton University Press: Princeton, NY, USA.

    Google Scholar 

  • Bruckstein, A., Sapiro, G., and Shaked, D. 1995. Evolutions of planar polygons. International Journal of Pattern Recognition and Artificial Intelligence, 9(6):991–1014.

    Google Scholar 

  • Bruckstein, A. and Shaked, D. 1997. On projective invariant smoothing and evolutions of planar curves and polygons. Journal of Mathematical Imaging and Vision, 7(3):225–240.

    Google Scholar 

  • Calugareanu, G. 1961. Sur les classes d'isotopie des noeuds tridimensionels et leaurs invariants. Czechoslovak Math. J., 11:588–625.

    Google Scholar 

  • Cartan, E. 1937a. Leçons sur la Théorie des Espaces à Connexion Projective. Gauthiers-Villars: Paris.

    Google Scholar 

  • Cartan, E. 1937b. La Théorie des Groupes Finis et Continus et la Géometrie Différentielle traitées par la Méthode du Répère Mobile. Gauthiers-Villars: Paris.

    Google Scholar 

  • Cartan, E. 1955. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Gauthiers-Villars: Paris.

    Google Scholar 

  • Darboux, M.G. 1878. Sur un problème de géometrie élementaire. Bull. Sci. Math, 2:298–304.

    Google Scholar 

  • Eberly, D. 1994. Geometric analysis of ridges in N-dimensional images. Ph.D. Thesis. University of North Carolina at Chapel Hill.

  • Eidel'Man, S.D. 1962. Parabolic Systems. North-Holland Publishing Company and Wolters-Noordhoff Publishing: Amsterdam, Groningen.

    Google Scholar 

  • Evans, L.C. and Spruck, J. 1991. Motion of level sets by mean curvature. Journal of Differential Geometry, 33:635–681.

    Google Scholar 

  • Faugeras, O. 1994. Three-Dimensional Computer Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Favard, J. 1957. Cours de Géométrie Différentielle Locale. Gauthiers-Villars: Paris.

    Google Scholar 

  • Freedman, M., He, Z.-X., and Wang, Z. 1994. Möbius energies of knots and unknots. Ann. Math., 139:1–50.

    Google Scholar 

  • Gage, M. 1983. An isoperimetric inequality with applications to curve shortening. Duke Mathematical Journal, 50:1225–1229.

    Google Scholar 

  • Gage, M. 1984. Curve shortening makes convex curves circular. Invent. Math., 76:357–364.

    Google Scholar 

  • Gage, M. and Hamilton, R.S. 1986. The heat equation shrinking convex plane curves. Journal of Differential Geometry, 23:69–96.

    Google Scholar 

  • Geraets, R., Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1995. Object recognition by affine evolution and curvature of discrete planar curves. In Proc. Computing Science in the Netherlands, SION: Utrecht, the Netherlands, pp. 86–97.

    Google Scholar 

  • Gerhardt, C. 1990. Flow of nonconvex hypersurfaces into spheres. Journal of Differential Geometry, 32:299–314.

    Google Scholar 

  • Gerig, G., Székely, G., and Koller, T. 1993. Line-finding in 2-D and 3-D by multi-valued non-linear diffusion of feature maps. In DAGM Symposium, Informatik aktuell, S.J. Pöppl and H. Handels (Eds.), Springer-Verlag: Berlin, pp. 289–296.

    Google Scholar 

  • Greenberg, M.J. and Harper, J.R. 1981. Algebraic Topology, a First Course. The Benjamin/Cummings Publishing Company: Menlo Park, CA.

    Google Scholar 

  • Griffiths, A. 1983. Exterior Differential Systems and the Calculus of Variations, Vol. 25 of Progress In Mathematics. Birkhäuser: Boston.

    Google Scholar 

  • Hirsch, W. 1976. Differential Topology. Springer-Verlag: New York.

    Google Scholar 

  • Huisken, G. 1984. Flow by mean curvature of convex surfaces into spheres. Journal of Differential Geometry, 20:237–266.

    Google Scholar 

  • Jain, A.K. 1989. Fundamentals of Digital Image Processing. Prentice Hall: Englewood Cliffs, NY.

    Google Scholar 

  • Kadi, A. and Edelen, D.G.B. 1983. A gauge theory of dislocations and disclinations, In em Lecture Notes in Physics, Vol. 174. Springer-Verlag: Berlin.

    Google Scholar 

  • Kalitzin, S.N., ter Haar Romeny, B.M., Salden, A.H., Nacken, P.F.M., and Viergever, M.A. 1998. Topological numbers and singularities in scalar images: Scale-space evolution properties. Journal of Mathematical Imaging and Vision, 9(3):253–269.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331.

    Google Scholar 

  • Kimia, B.B. 1991. Entropy scale-space. In Proc. of Visual Form Workshop, Plenum Press: Capri, Italy, pp. 333–344.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A., and Zucker, S.W. 1992. On the evolution of curves via a function of curvature I: The classical case. Journal of Mathematical Analysis and Applications, 163:438–458.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A., and Zucker, S.W. 1995. Shapes, shocks, and deformations, I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15(3):189–224.

    Google Scholar 

  • Kleinert, H. 1989. Gauge Fields in Condensed Matter, Vols. 1/2. World Scientific: Singapore.

    Google Scholar 

  • Koenderink, J.J. 1984. The structure of images. Biol. Cybern., 50:363–370.

    Google Scholar 

  • Koenderink, J.J. 1990. Solid Shape. MIT Press: Cambridge, Mass.

    Google Scholar 

  • Koenderink, J.J. 1992. Fundamentals of bicentric perspective. In Lecture Notes in Computer Science, Vol. 653, A. Bensoussan and J.P. Verjus (Eds.), Springer Verlag: Berlin, pp. 233–251.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1981. A description of the structure of visual images in terms of an ordered hierarchy of light and dark blobs. In Second Int. Visual Psychophysics and Medical Imaging Conf., IEEE Cat. No. 81, chap. 1676–6.

  • Koenderink, J.J. and van Doorn, A.J. 1986. Dynamic shape. Biol. Cybern., 53:383–396.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1993. Local features of smooth shapes: Ridges and courses. In Proc. SPIE Geometric Methods in Computer Vision II, Vol. 2031, SPIE: San Diego, CA, pp. 2–13.

    Google Scholar 

  • Lindeberg, T. 1990. Scale-space for discrete signals. IEEE Trans.Pattern Analysis and Machine Intelligence, 12(3):234–245.

    Google Scholar 

  • Lindeberg, T. 1994. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers: Dordrecht, the Netherlands.

    Google Scholar 

  • Milnor, J.W. 1949. On the total curvature of knots. Annals of Mathematics, 52:248–257.

    Google Scholar 

  • Mokhtarian, F. 1988a. Multi-scale description of space curves and three-dimensional objects. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, pp. 298–303.

  • Mokhtarian, F. 1988b. The renormalized curvature scale-space and the evolutions properties of planar curves. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, pp. 318–326

  • Mokhtarian, F. 1988c. Evolution properties of space curves. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Tarpon Springs, FL, pp. 100–105.

  • Mokhtarian, F. 1989. Fingerprint theorems for curvature and torsion zero-crossing. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, pp. 269–275.

  • Mokhtarian, F. 1993. Multi-scale torsion-based shape representations for space curves. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, pp. 660–665.

  • Mokhtarian, F. and Mackworth, A. 1986. Scale-based description of planar curves and two-dimensional shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1):34–43.

    Google Scholar 

  • Mokhtarian, F. and Mackworth, A. 1992. A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Analysis and Machine Intelligence, 14(8):789–805.

    Google Scholar 

  • Okubo, T. 1987. Differential Geometry. Marcel Dekker: New York and Basel.

    Google Scholar 

  • Olver, P.J. 1986. Applications of Lie Groups to Differential Equations, Vol. 107 of Graduate Texts in Mathematics. Springer-Verlag: New York.

    Google Scholar 

  • Osher, S. and Sethian, S. 1988. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formalism. J. Computational Physics, 79:12–49.

    Google Scholar 

  • Pohl, W.F. 1968. The self-linking number of a closed space curve. Journal of Mathematics and Mechanics, 17(10):975–985.

    Google Scholar 

  • Pommaret, J.F. 1978. Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach, Science Publishers, Inc.: New York.

    Google Scholar 

  • Reidemeister, K. 1932. Knotentheorie. Verlag von Julius Springer: Berlin.

    Google Scholar 

  • ter Haar Romeny, B.M. (Ed.). 1994. Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers: Dordrecht.

    Google Scholar 

  • Rougon, N. 1993. On mathematical foundations of local deformation analysis. In Proceedings SPIE's International Symposium on Optical Applied Science and Engineering—Mathematical Methods in Medical Imaging II, Vol. 2035, SPIE: San Diego, CA, USA, pp. 2–13.

    Google Scholar 

  • Salden, A.H. 1996. Dynamic Scale-Space Paradigms. Ph.D. Thesis. Utrecht University, the Netherlands.

  • Salden, A.H. 1997a. Dynamic scale-space theories. In 9th International Conference on Image Analysis and Processing, A.D. Bimbo and V. Capellini (Eds.), Florence, Italy, pp. 158–165.

  • Salden, A.H. 1997b. Modern geometry of image formation. In 1997 IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing, CD-ROM Vol. 341, E.J. Coyle (Ed.), Causal Productions: Mackinac Island, Michigan.

    Google Scholar 

  • Salden, A.H. 1998. Euclidean invariants of linear scale-spaces. In ACCV'98, 3rd Asian Conference on Computer Vision, 1998, Lecture Notes in Computer Science, R.T. Chin (Ed.), Vol. 1352, Hong Kong, China, pp. 65–72.

  • Salden, A.H. 1999. Dynamic scale-space paradigm versus mathematical morphology? In AeroSense'99, SPIE's 13th Annual International Symposium on Aerospace/Defence Sensing, Simulation, and Control, S.K. Park and R.D. Juday (Eds.), Vol. 3716, SPIE: Orlando, FL, pp. 155–166.

    Google Scholar 

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1993. Image structure generating normalised geometric scale spaces. In Image Processing '93, M.A. Viergever, Utrecht, the Netherlands, pp. 141–143.

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1995. Modern geometry and dynamic scale-space theories. In Proc. Conf. on Differential Geometry and Computer Vision: From Pure over Applicable to Applied Differential Geometry, Nordfjordeid, Norway, in press.

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1997. Dynamic scale-space theories. In Scale-Space 97, First International Conference on Scale-Space Theory in Computer Vision, B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and M.A. Viergever (Eds.), Utrecht, the Netherlands, pp. 248–259.

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1998a. Differential and integral geometry of linear scale-spaces. Journal of Mathematical Imaging and Vision, 9(1):5–27.

    Google Scholar 

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1998b. Linear scale-space theory from physical principles. Journal of Mathematical Imaging and Vision, 9(2):103–139.

    Google Scholar 

  • Salden, A.H., ter Haar Romeny, B.M., and Viergever, M.A. 1999. Dynamic Scale-Space Paradigm. Journal of Mathematical Imaging and Vision, Submitted.

  • Salden, A.H., Weickert, J., and ter Haar Romeny, B.M.. 1998c. Bluman and Kumei's Nonlinear Scale-Space Theory. Journal of Mathematical Imaging and Vision, Submitted.

  • Santalo, L.A. 1976. Integral Geometry and Geometric Probability. Addison-Wesley Publishing Company: London.

    Google Scholar 

  • Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., and Bruckstein, A.M. 1993. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363–1372.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale-space. International Journal of Computer Vision, 11(1):25–44.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1995. Area and length preserving geometric invariant scale-spaces. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(1):67–72.

    Google Scholar 

  • Schwartz, R. 1992. A projective natural flow for circle diffeomorphisms. Inventiones Mathematicae, 110(3):627–648.

    Google Scholar 

  • Spivak, M. 1975. Differential Geometry,Vols. 1–5. Publish or Perish: Berkeley, CA, USA.

    Google Scholar 

  • Thurston, D. 1995. Integral Expressions for the Vassiliev Knot Invariants. Harvard University, U.S.A. Senior Thesis.

    Google Scholar 

  • Tze, C.-H. 1988. Manifold-splitting regularization, self-linking, twisting, writhing numbers of space-time ribbons and polyakov's proof of Fermi-Bose transmutations. International Journal of Modern Physics A, 3(8):1959–1979.

    Google Scholar 

  • Vassiliev, V.A. 1990. Topology of complements to discriminants and loop spaces. Advances in Soviet Mathematics, 1:9–21.

    Google Scholar 

  • Weickert, J. 1996. Anisotropic Diffusion in Image Processing. Ph.D. Thesis, Dept. of Mathematics, University of Kaiserslautern.

  • White, J.H. 1969. Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics, 91:693–728.

    Google Scholar 

  • Wolff, L.B., Shafer, S.A., and Healey, G. 1992. Physics-based Vision: Principles and Practice; Radiometry. Jones and Bartlett Publishers: London, UK.

    Google Scholar 

  • Yano, K. 1955. The Theory of Lie Derivatives and its Applications. P. Noordhoff: Groningen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salden, A.H., ter Haar Romeny, B.M. & Viergever, M.A. Linearised Euclidean Shortening Flow of Curve Geometry. International Journal of Computer Vision 34, 29–67 (1999). https://doi.org/10.1023/A:1008172320786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008172320786

Navigation