Skip to main content
Log in

Structural studies of symmetric DNA undecamers containing non-symmetrical sheared (PuGAPu):(PyGAPy) motifs

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Interstrand purine-purine stacks originate from tandem sheared purine•purine pairing and represent one of the most important motifs in both DNA and RNA structures. Several RNA and DNA structures, solved recently in both solution and the solid state, contain these special motifs, which greatly increase the structural diversity of nucleic acid molecules. The direct evidence for the sheared purine-purine pairing at neutral pH in solution remains, however, elusive. In this manuscript, we have used high resolution NMR methods to study a series of symmetrical DNA duplexes containing two non-symmetrical 5′-(PuGAPu)/(PyGAPy)-3′ motifs. Many strong- and medium-strength NOEs across the G•A base pair were detected in the H2O-NOESY spectra collected at a relatively low temperature (−5 °C ). These NOEs, especially those from A-6NH2 to G-H1′, G-H4′, and G-2NH2, clearly define the proposed side-by-side sheared G•A pairing nature. Another interesting feature is the strong NOEs exhibited by the unpaired G-imino proton in the G•A pair to its own G-2NH2, which implies that G-2NH2 is involved in H-bonding with a base in the minor groove edge. The finding that non-symmetrical (PuGAPu):(PyGAPy) motif also form similarly stable structures loosens the requirement for a more restricted (PyGAPu)2 motif in forming the interstrand purine-purine stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altona, C. (1982) Recl. Trav. Chim. Pays-Bas, 101, 413–433.

    Google Scholar 

  • Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R. and Doudna, J.A. (1996) Science, 273, 1678–1685.

    Google Scholar 

  • Cheng, J.-W., Chou, S.-H. and Reid, B.R. (1992) J. Mol. Biol., 228, 1037–1041.

    Google Scholar 

  • Chou, S.-H., Cheng, J.-W., Fedoroff, O. and Reid, B.R. (1994a) J. Mol. Biol., 241, 467–479.

    Google Scholar 

  • Chou, S.-H., Cheng, J.-W. and Reid, B. (1992) J. Mol. Biol., 228, 138–155.

    Google Scholar 

  • Chou, S.-H., Flynn, P. and Reid, B. (1989) Biochemistry, 28, 2422–2435.

    Google Scholar 

  • Chou, S.-H., Hare, D.R., Wemmer, D.E. and Reid, B.R. (1983) Biochemistry, 22, 3037–3041.

    Google Scholar 

  • Chou, S.-H. and Tseng, Y.-Y. (1999) J. Mol. Biol., 285, 41–48.

    Google Scholar 

  • Chou, S.-H., Tseng, Y.-Y. and Wang, S.-W. (1999) J. Mol. Biol., in press.

  • Chou, S.-H., Zhu, L., Gao, Z., Cheng, J.-W. and Reid, B.R. (1996) J. Mol. Biol., 264, 981–1001.

    Google Scholar 

  • Chou, S.-H., Zhu, L. and Reid, B.R. (1994b) J. Mol. Biol., 244, 259–268.

    Google Scholar 

  • Chou, S.-H., Zhu, L. and Reid, B.R. (1997) J. Mol. Biol., 267, 1055–1067.

    Google Scholar 

  • Correll, C.C., Freeborn, B., Moore, P.B. and Steitz, T.A. (1997) Cell, 91, 705–712.

    Google Scholar 

  • Crook, S.T. and Bennett, C.T. (1996) Annu. Rev. Pharmacol. Toxicol., 36, 107–129.

    Google Scholar 

  • Dallas, A. and Moore, P.B. (1997) Structure, 5, 1639–1653.

    Google Scholar 

  • Delihas, N., Rokita, S.E. and Zheng, P. (1997) Nat. Biotechnol., 15, 751–753.

    Google Scholar 

  • Ferrer, N., Azorin, F., Villasante, A., Gutierrez, C. and Abad, J.P. (1995) J. Mol. Biol., 245, 8–21.

    Google Scholar 

  • Han, G.W., Kopka, M.L., Cascio, D., Grzeskowiak, K. and Dickerson, R.E. (1997) J. Mol. Biol., 269, 811–826.

    Google Scholar 

  • Hare, D.R., Wemmer, D.E., Chou, S.-H., Drobny, G. and Reid, B.R. (1983) J. Mol. Biol., 171, 319–336.

    Google Scholar 

  • Huang, C.-H., Lin, Y.-S., Yang, Y.-L., Huang, S.-w. and Chen, C.W. (1998) Mol. Microbiol., 28, 905–916.

    Google Scholar 

  • James, K.D. and Ellington, A.D. (1997) Chem. Biol., 4, 595–605.

    Google Scholar 

  • Katahira, M.H.S., Mishima, K., Uesugi, S. and Fujii, S. (1993) Nucleic Acids Res., 21, 5418–5424.

    Google Scholar 

  • Li, Y. and Agrawal, S. (1995) Biochemistry, 34, 10056–10062.

    Google Scholar 

  • Li, Y., Zon, G. and Wilson, W.D. (1991a) Proc. Natl. Acad. Sci. USA, 88, 26–30.

    Google Scholar 

  • Li, Y., Zon, G. and Wilson, W.D. (1991b) Biochemistry, 30, 7566–7572.

    Google Scholar 

  • Lin, C.-H., Wang, W., Jones, R.A. and Patel, D.J. (1998) Chem. Biol., 5, 555–572.

    Google Scholar 

  • Maskos, K., Gunn, B.M., LeBlanc, D.A. and Morden, K. M. (1993) Biochemistry, 32, 3583–3595.

    Google Scholar 

  • Mooren, M.M.W., Pulleyblank, D.E., Wijmenga, S.S., van de Ven, F.J.M. and Hilbers, C.W. (1994) Biochemistry, 33, 7315–7325.

    Google Scholar 

  • Mueller, L., Legault, P. and Pardi, A. (1995) J. Am. Chem. Soc., 117, 11043–11048.

    Google Scholar 

  • Ortiz-Lombardia, M., Cortes, A., Huertas, D., Eritia, R. and Azorin, F. (1998) J. Mol. Biol., 277, 757–762.

    Google Scholar 

  • Pley, H.W., Flaherty, K.M. and McKay, D.B. (1994) Nature, 372, 68–74.

    Google Scholar 

  • Radhakrishnan, I., Gao, X., de los Santos, C., Live, D. and Patel, D.J. (1991) Biochemistry, 30, 9022–9030.

    Google Scholar 

  • Rajagopal, P. and Feigon, J. (1989) Nature, 339, 637–640.

    Google Scholar 

  • Sarma, R.H., Mynott, R.J., Wood, D.J. and Hruska, F.E. (1973) J. Am. Chem. Soc., 95, 6457–6459.

    Google Scholar 

  • Shepard, W., Cruse, W.B.T., Fourme, R., Fortelle, E.d.l. and Prange, T. (1998) Structure, 6, 849–861.

    Google Scholar 

  • Shlomai, J. and Kornberg, A. (1980) Proc. Natl. Acad. Sci. USA, 77, 799–803.

    Google Scholar 

  • Walter, A.E., Wu, M. and Turner, D.H. (1994) Biochemistry, 33, 11349–11354.

    Google Scholar 

  • Wu, M. and Turner, D.H. (1996) Biochemistry, 35, 9677–9689.

    Google Scholar 

  • Zhu, L., Chou, S.-H. and Reid, R.B. (1995) J. Mol. Biol., 254, 623–637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, SH., Tseng, YY., Chen, YR. et al. Structural studies of symmetric DNA undecamers containing non-symmetrical sheared (PuGAPu):(PyGAPy) motifs. J Biomol NMR 14, 157–167 (1999). https://doi.org/10.1023/A:1008351213029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008351213029

Navigation