Skip to main content
Log in

Subthreshold Voltage Noise Due to Channel Fluctuations in Active Neuronal Membranes

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conformational states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy membrane currents and subthreshold voltage fluctuations and may contribute to variability in spike timing. Here we study subthreshold voltage fluctuations due to active voltage-gated Na+ and K+ channels as predicted by two commonly used kinetic schemes: the Mainen et al. (1995) (MJHS) kinetic scheme, which has been used to model dendritic channels in cortical neurons, and the classical Hodgkin-Huxley (1952) (HH) kinetic scheme for the squid giant axon. We compute the magnitudes, amplitude distributions, and power spectral densities of the voltage noise in isopotential membrane patches predicted by these kinetic schemes. For both schemes, noise magnitudes increase rapidly with depolarization from rest. Noise is larger for smaller patch areas but is smaller for increased model temperatures. We contrast the results from Monte Carlo simulations of the stochastic nonlinear kinetic schemes with analytical, closed-form expressions derived using passive and quasi-active linear approximations to the kinetic schemes. For all subthreshold voltage ranges, the quasi-active linearized approximation is accurate within 8% and may thus be used in large-scale simulations of realistic neuronal geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chow C, White J (1996) Spontaneous action potentials due to channel fluctuations. Biophys. J. 71:3013-3021.

    Google Scholar 

  • Clay JR, DeFelice LJ (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophys. J. 42:151-157.

    Google Scholar 

  • Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Irans. Roy. Soc. Lond. B 300:1-59.

    Google Scholar 

  • DeFelice LJ (1981) Introduction to Membrane Noise. Plenum Press, New York.

    Google Scholar 

  • DeFelice LJ, Isaac A (1992) Chaotic states in a random world. J. Stat. Phys. 70:339-352.

    Google Scholar 

  • Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81:1531-1547.

    Google Scholar 

  • Fishman HM (1975) Noise measurements in axon membranes. Fed. Proc. 34:1330-1337.

    Google Scholar 

  • Fishman HM, Poussart DM, Moore LE (1975) Noise measurements in squid axon membrane. J. Membr. Biol. 24:281-304.

    Google Scholar 

  • Fox RF (1997) Stochastic versions of the Hodgkin-Huxley equations. Biophys. J. 72:2068-2074.

    Google Scholar 

  • Fox RF, Lu Y (1994) Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49:3421-3431.

    Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9:1179-1209.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500-544.

    Google Scholar 

  • HorikawaY(1991) Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66:19-25.

    Google Scholar 

  • Horikawa Y (1993) Simulation study on effects of channel noise on differential conduction at an axon branch. Biophys. J. 65:680-686.

    Google Scholar 

  • Johnston D, Wu SM (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol. Cybern. 50:15-33.

    Google Scholar 

  • Koch C (1999) Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York.

    Google Scholar 

  • Lecar H, Nossal R (1971a) Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing. Biophys. J. 11:1048-1067.

    Google Scholar 

  • Lecar H, Nossal R (1971b) Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophys. J. 11:1068-1084.

    Google Scholar 

  • Liebovitch LS, Toth TI (1990) Using fractals to understand the opening and closing of ion channels. Ann. Biomed. Eng. 18:177-194.

    Google Scholar 

  • Liebovitch LS, Toth TI (1991) A model of ion channel kinetics using deterministic chaotic rather than stochastic processes. J. Theor. Biol. 148:243-267.

    Google Scholar 

  • Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15:1427-1439.

    Google Scholar 

  • Manwani A, Koch C (1998) Synaptic transmission: An informationtheoretic pespective. In: Jordan M, Kearns MS, Solla SA, eds. Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, MA. pp. 201-207.

    Google Scholar 

  • Manwani A, Koch C (1999a) Detecting and estimating signals in noisy cable structures: I. Neuronal noise sources. Neural Comput. In press.

  • Manwani A, Koch C (1999b) Detecting and estimating signals in noisy cable structures: II. Information-theoretic analysis. Neural Comput. In press.

  • Manwani A, Koch C (1999c) Signal detection in noisy weakly active dendrites. In: Kearns MS, Solla SA, Cohn DA, eds. Advances in Neural Information Processing Systems 11. MIT Press, Cambridge, MA.

    Google Scholar 

  • Manwani A, Segev I, Yarom Y, Koch C (1998) Neuronal noise sources in membrane patches and linear cables: An analytical and experimental study. Soc. Neurosci. Abstr. 719.4, p. 1813.

    Google Scholar 

  • Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol. 55:497-523.

    Google Scholar 

  • Papoulis A (1991) Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.

    Google Scholar 

  • Pare DE, Label E, Lang EJ (1997) Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78:1735-1739.

    Google Scholar 

  • Pare DE, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79:1450-1460.

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Rubinstein JT (1995) Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys. J. 68:779-785.

    Google Scholar 

  • Sabah NH, Leibovic KN (1969) Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Biophys. J. 9:1206-1222.

    Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion-channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10:1679-1703.

    Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18:3870-3896.

    Google Scholar 

  • Skaugen E (1980a) Firing behavior in nerve cell models with a 148 Steinmetz et al. two-state pore system. Acta Physiol. Scand. 109:337-392.

    Google Scholar 

  • Skaugen E (1980b) Firing behavior in stochastic nerve membrane models with different pore densities. Acta Physiol. Scand. 108:49-60.

    Google Scholar 

  • Skaugen E, Wallœ L (1979) Firing behavior in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand. 107:343-363.

    Google Scholar 

  • Stevens CF (1972) Inferences about membrane properties from electrical noise measurements. Biophys. J. 12:1028-1047.

    Google Scholar 

  • Strassberg AF, DeFelice LJ (1993) Limitations of the Hodgkin-Huxley formalism: Effect of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 5:843-855.

    Google Scholar 

  • Toib A, Lyakhov V, Marom S (1998) Interaction between duration of activity and rate of recovery from slow inactivation in mammalian brain NaC channels. J. Neurosci. 15:1893-1903.

    Google Scholar 

  • Traynelis SF, Jaramillo F (1998) Getting the most out of noise in the central nervous system. Trends Neurosci. 21:137-145.

    Google Scholar 

  • van den Berg RJ, de Goede J, Verveen AA (1975) Conductance fluctuations in Ranvier nodes. Pflug. Arch. 360:17-23.

    Google Scholar 

  • van den Berg RJ, Rijnsburger WH (1980) Membrane current and noise measurements in voltage-clamped node of Ranvier. J. Membr. Biol. 57:213-221.

    Google Scholar 

  • Verveen AA, DeFelice LJ (1974) Membrane noise. Prog. Biophys. Mol. Biol. 28:189-265.

    Google Scholar 

  • Wanke E, DeFelice LJ, Conti F (1974) Voltage noise, current noise, and impedance in space clamped squid giant axon. Pflug. Arch. 347:63-74.

    Google Scholar 

  • White JA, Budde T, Kay AR (1995) A bifurcation analysis of neuronal subthreshold oscillations. Biophys. J. 69:1203-1217.

    Google Scholar 

  • White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltagegated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80:262-269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, P.N., Manwani, A., Koch, C. et al. Subthreshold Voltage Noise Due to Channel Fluctuations in Active Neuronal Membranes. J Comput Neurosci 9, 133–148 (2000). https://doi.org/10.1023/A:1008967807741

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008967807741

Navigation