Skip to main content
Log in

Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A cyclic nonapeptide library displayed on filamentous bacteriophages was selected 6 times against α-chymotrypsin (EC 3.4.21.1) at three different pH conditions (6.5, 7.0, and 7.5). Phage peptide clones from the sixth selection, at all three pH conditions, interacted more strongly with α-chymotrypsin than the original library and a wild-type phage did. DNA sequencing of the selected phage peptide clones showed that different cyclic nonapeptide sequences had been selected at the different pH conditions. The oxidized form of the synthetic peptide, Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys, selected at pH 7.5, could completely inhibit the enzymatic activity of α-chymotrypsin. The structurally related enzymes trypsin (bovine) and elastase (porcine) were only marginally inhibited by the same peptide under the same conditions. The inhibition constant for α-chymotrypsin was estimated to be 10-6 M. Phage clones expressing this peptide had a lower affinity for phenylmethylsulfonylfluoride-modified α-chymotrypsin than for natural α-chymotrypsin as determined by an enzyme immunosorbent assay. This peptide phage clone was also competitively prevented from binding to α-chymotrypsin by the corresponding synthetic oxidized peptide. Collectively, the results suggest that the oxidized form of the selected peptide Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys interacts with the active site of α-chymotrypsin and acts as a specific inhibitor to the enzyme. To our knowledge, the selected sequence Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys has not been found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clackson, T. and Wells, J.A., In vitro selection from protein and peptide libraries, TIBTECH, 12 (1994) 173–184.

    CAS  Google Scholar 

  2. Birnbaum, S. and Mosbach, K., Peptide screening, Curr. Opin. Biotechnol., 3 (1992) 49–54.

    Article  CAS  Google Scholar 

  3. Smith, G.P. and Petrenko, V.A., Phage display, Chem. Rev., 97 (1997) 391–410.

    Article  CAS  Google Scholar 

  4. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H., Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86.

    Article  CAS  Google Scholar 

  5. Krook, M., Lindbladh, C., Birnbaum, S., Naess, H., Eriksen, J.A. and Mosbach, K., Selection of peptides with surface affinity for α-chymotrypsin using a phage display library, J. Chromatogr., 711 (1995) 119–128.

    Article  CAS  Google Scholar 

  6. Meldal, M. and Svendsen, I., Direct visualization of enzyme inhibitors using a portion mixing inhibitor library containing a quenched fluorogenic peptide substrate. Part 1. Inhibitors for subtilisin Carlsberg, J. Chem. Soc., Perkin Trans. 1, (1995) 1591–1596.

    Article  Google Scholar 

  7. Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J., Peptides on phage: A vast library of peptides for identifying ligands, Proc. Natl. Acad. Sci. USA, 87 (1990) 6378–6382.

    Article  CAS  Google Scholar 

  8. Jellis, C.L., Cradick, T.J., Rennert, P., Salinas, P., Boyd, J., Amirault, T. and Gray, G.S., Defining critical residues in the epitope for an HIV-neutralizing monoclonal antibody using phage display and peptide array technologies, Gene, 137 (1993) 63–68.

    Article  CAS  Google Scholar 

  9. Krook, M., Mosbach, K. and Lindbladh, C., Selection of peptides with affinity for single stranded DNA using a phage display library, Biochem. Biophys. Res. Commun., 204 (1994) 849–853.

    Article  CAS  Google Scholar 

  10. Devlin, J.J., Panganiban, L. and Devlin, P.E., Random peptide libraries: A source of specific protein binding molecules, Science, 249 (1990) 404–406.

    CAS  Google Scholar 

  11. Koivunen, E., Gay, D.A. and Ruoslahti, E., Selection of peptides binding to the α5β1) integrin from phage display library, J. Biol. Chem., 268 (1993) 20205–20210.

    CAS  Google Scholar 

  12. Scott, J.K. and Smith, G.P., Searching for peptide ligands with an epitope library, Science, 249 (1990) 386–390.

    CAS  Google Scholar 

  13. Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Selecting high-affinity binding proteins by monovalent phage display, Biochemistry, 30 (1991) 10832–10838.

    Article  CAS  Google Scholar 

  14. Roberts, B.L., Markland, W., Siranosian, K., Saxena, M.J., Guterman, S.K. and Ladner, R.C., Directed evolution of a protein: Selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage, Proc. Natl. Acad. Sci. USA, 89 (1992) 2429–2433.

    Article  CAS  Google Scholar 

  15. Winter, G., Griffiths, A.D., Hawkins, R.E. and Hoogenboom, H.R., Making antibodies by phage display technology, Annu. Rev. Immunol., 12 (1994) 433–455.

    Article  CAS  Google Scholar 

  16. Jamieson, A.C., Sung-Hou, K. and Wells, J.A., In vitro selection of zinc fingers with altered DNA-binding specificity, Biochemistry, 33 (1994) 5689–5695.

    Article  CAS  Google Scholar 

  17. Rebar, E.J. and Pabo, C.O., Zinc finger phage: Affinity selection of fingers with new DNA-binding specificities, Science, 263 (1994) 671–673.

    CAS  Google Scholar 

  18. Scarselli, E., Esposito, G. and Traboni, C., Receptor phage. Display of functional domains of the human high affinity IgE receptor on the M13 phage surface, FEBS Lett., 329 (1993) 223–226.

    Article  CAS  Google Scholar 

  19. O'Neil, K.T., Hoess, R.H., Jackson, S.A., Ramachandran, N.S., Mousa, S.A. and DeGrado, W.F., Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library, Proteins Struct. Funct. Genet., 14 (1993) 509–515.

    Google Scholar 

  20. Koivunen, E., Wang, B. and Ruoslahti, E., Isolation of a highly specific ligand for the α5β1 integrin from a phage display library, J. Cell Biol., 124 (1994) 373–380.

    Article  CAS  Google Scholar 

  21. Folgori, A., Tafi, R., Meola, A., Felici, F., Galfré, G., Cortese, R., Monaci, P. and Nicosia, A., A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera, EMBO J., 13 (1994) 2236–2243.

    CAS  Google Scholar 

  22. Lener, D., Benarous, R. and Calogero, R.A., Use of a constrained phage displayed-peptide library for the isolation of peptides binding to HIV-1 nucleocapsid protein (NCp7), FEBS Lett., 361 (1995) 85–88.

    Article  CAS  Google Scholar 

  23. Hoess, R.H., Mack, A.J., Walton, H. and Reilly, T.M., Identification of a structural epitope by using a peptide library displayed on filamentous bacteriophage, J. Immunol., 153 (1994) 724–729.

    CAS  Google Scholar 

  24. Kraut, J., Serine proteases: Structure and mechanism of catalysis, Annu. Rev. Biochem., 46 (1977) 331–358.

    Article  CAS  Google Scholar 

  25. Bode, W. and Huber, R., Natural protein proteinase inhibitors and their interaction with proteinases, Eur. J. Biochem., 2 (1992) 433–451.

    Article  Google Scholar 

  26. Eichler, J. and Houghten, R.A., Identification of substrateanalog trypsin inhibitors through the screening of synthetic peptide combinatorial libraries, Biochemistry, 32 (1993) 11035–11041.

    Article  CAS  Google Scholar 

  27. Domingo, G.J., Leatherbarrow, R.J., Freeman, N., Patel, S. and Weir, M., Synthesis of a mixture of cyclic peptides based on the reactive site loop to screen for serine protease inhibitors, Int. J. Pept. Protein Res., 46 (1995) 79–87.

    Article  CAS  Google Scholar 

  28. McBride, J.D., Freeman, N., Domingo, G.J. and Leatherbarrow, R.J., Selection of chymotrypsin inhibitors from a conformationally constrained combinatorial peptide library, J.Mol. Biol., 259 (1996) 819–827.

    Article  CAS  Google Scholar 

  29. Markland, W., Ley, A.C., Lee, S.W. and Ladner, R.C., Iterative optimization of high-affinity protease inhibitors using phage display. 1. Plasmin, Biochemistry, 35 (1996) 8045–8057.

    Article  CAS  Google Scholar 

  30. Markland, W., Ley, A.C. and Ladner, R.C., Iterative optimization of high-affinity protease inhibitors using phage display. 2. Plasma kallikrein and thrombin, Biochemistry, 35 (1996) 8058–8067.

    Article  CAS  Google Scholar 

  31. Eichler, J., Lucka, A.W. and Houghten, R.A., Cyclic peptide template combinatorial libraries: Synthesis and identification of chymotrypsin inhibitors, Pept. Res., 7 (1994) 300–307.

    CAS  Google Scholar 

  32. Bastos, M., Maeji, N.J. and Abeles, R.H., Inhibitors of human heart chymase based on a peptide library, Proc. Natl. Acad. Sci. USA, 92 (1995) 6738–6742.

    Article  CAS  Google Scholar 

  33. Rui, F., Jie, Q., Zhi-bin, L., Hui, Z., Wei, L. and Jiacong, S., Selection of trypsin inhibitors in phage peptide library, Biochem. Biophys. Res. Commun., 220 (1996) 53–56.

    Article  Google Scholar 

  34. Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  35. Dryland, E. and Sheppard, R.C., Peptide synthesis. Part 8. A system for solid-phase synthesis under low pressure continuous flow conditions, J. Chem. Soc., Perkin Trans. 1, (1986) 125–137.

    Article  Google Scholar 

  36. Knorr, R., Trzeciak, A., Bannawarth, A. and Gillesen, D.,New coupling reagents in peptide chemistry, Tetrahedron Lett., 30 (1989) 1927–1930.

    Article  CAS  Google Scholar 

  37. Barrett, R.W., Cwirla, S.E., Ackerman, M.S., Olsson, A.M., Peters, E.A. and Dower, W.J., Selective enrichment and characterization of high affinity ligands from collections of random peptides on filamentous phage, Anal. Biochem., 204 (1992) 357–364.

    Article  CAS  Google Scholar 

  38. Smith, G.P., Filamentous phages as cloning vectors, In Rodriguez, R.L. and Denhart, D.T. (Eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston, MA, 1987, pp. 61–83.

    Google Scholar 

  39. Laskowski Jr., M. and Kato, I., Protein inhibitors of proteinases, Annu. Rev. Biochem., 49 (1980) 593–626.

    Article  CAS  Google Scholar 

  40. McPhalen, C.A., Svendsen, I., Jonassen, I. and James, M.N.G., Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin Novo, Biochemistry, 82 (1985) 7242–7246.

    CAS  Google Scholar 

  41. Bigler, T.L., Lu, W., Park, S.J., Wieczorek, M., Wynn, R. and Laskowski Jr., M., Binding of amino acid side chains to preformed cavities: Interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P1 residues, Protein Sci., 2 (1993) 786–799.

    Article  CAS  Google Scholar 

  42. Palmer, T., Understanding Enzymes, Ellis Horwood, Chichester, 1991.

    Google Scholar 

  43. Harry, J.B. and Steiner, R.F., A soybean proteinase inhibitor. Thermodynamic and kinetic parameters of association with enzymes, Eur. J. Biochem., 16 (1970) 174–179.

    Article  CAS  Google Scholar 

  44. Holmberg, N., Lilius, G., Bailey, J.E. and Bülow, L., Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production, Nat. Biotechnol., 15 (1997) 244–247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krook, M., Lindbladh, C., Eriksen, J.A. et al. Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library. Mol Divers 3, 149–159 (1997). https://doi.org/10.1023/A:1009697515328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009697515328

Navigation