Skip to main content
Log in

Transformation of Carbon Nanotubes to Diamond at High Pressure and High Temperature

  • Published:
Russian Physics Journal Aims and scope

Abstract

The synthesis of diamond at high pressure and high temperature and the discovery of fullerenes and carbon nanotubes are among the most important achievements in carbon science. In the present work, we report the synthesis of diamond from carbon nanotubes at 4.5 GPa and 1300°C. Under these conditions, no diamond crystals were obtained when graphite was used as the starting material. The detailed investigation shows that at high pressure and high temperature carbon nanotubes first transform into quasi-spherical onion-like structures and then into diamond crystals. Our work suggests that carbon nanotubes can be used for the synthesis of high-quality diamond crystals at lower pressure and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr. Nature (London), 176, 51 (1955).

    Google Scholar 

  2. H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr. Nature (London), 184, 1094 (1959).

    Google Scholar 

  3. H. W. Kroto, J. R. Heath, S. C. 0'Brien, R. F. Curl, and R. E. Smally, Nature (London), 318, 162 (1985).

    Google Scholar 

  4. S. lijima, Nature (London), 354, 56 (1991).

    Google Scholar 

  5. M. S. Dresselhaus, G. Dresselhaus, and P. C. Ekiund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).

    Google Scholar 

  6. Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, 0. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, Jr., A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi, Science, 264, 1570 (1994).

    Google Scholar 

  7. M. Nufiez-Regueiro, L. Marques, J-L. Hodeau, 0. Bethoux, and M. Perroux. Phys. Rev. Lett., 74, 278 (1995).

    Google Scholar 

  8. L. Marques, J-L. Hodeau, M. Nunez-Regueiro, and M. Perroux, Phys. Rev., B54, R12633 (1996).

    Google Scholar 

  9. M. Nufiez-Regueiro, P. Monceau, and J-L. Hodeau, Nature (London), 355, 237 (1992).

    Google Scholar 

  10. Y. Z. Ma, G. T. Zou, H. B. Yang, and J. F. Meng, Appl. Phys. Lett., 65, 822 (1994).

    Google Scholar 

  11. M. Zhang, D. W. He, X. Y. Zhang, L. Ji, B. Q. Wei, D. H. Wu, F. X. Zhang, Y. F. Xu, and W. K. Wang, Carbon, 35, 1671 (1997).

    Google Scholar 

  12. Y. Q. Zhu, T. Sekine, T. Kobayashi, E. Takazawa, M. Terrones, and H. Terrones, Chem. Phys. Lett., 287, 689 (1998).

    Google Scholar 

  13. Hamwi, H. Alvergnat, S. Bonnamy, and F. Beguin, Carbon, 35, 723 (1997).

    Google Scholar 

  14. M. Monthioux, and J. G. Lavin, Carbon, 32, 335 (1994).

    Google Scholar 

  15. D. Ugarte, Nature, 359, 707 (1992).

    Google Scholar 

  16. D. Ugarte, Chem. Phys. Lett., 207, 473 (1993).

    Google Scholar 

  17. F. Banhart, and P. M. Ajayan, Nature, 382, 433 (1996).

    Google Scholar 

  18. F. Banhart, T. Fuller, Ph. Redlich, and P. M. Ajayan, Chem. Phys. Lett., 269, 349 (1997).

    Google Scholar 

  19. P. Wesolowski, Y. Lyutovich, F. Banhart, H. D. Carstanjen, and H. Kronmuller, Appl. Phys. Lett., 71, 1948 (1997).

    Google Scholar 

  20. F. Banhart, Rep. Prog. Phys., 62, 1181 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.K., Cao, L.M. Transformation of Carbon Nanotubes to Diamond at High Pressure and High Temperature. Russian Physics Journal 44, 178–182 (2001). https://doi.org/10.1023/A:1011373920458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011373920458

Keywords

Navigation