Skip to main content
Log in

Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier–Stokes equations, and Hamilton–Jacobi-like equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Abgrall, (1996). Numerical discretization of the first-order Hamilton-Jacobi equations on triangular meshes. Comm.Pure Appl.Math. 49, 1339–1377.

    Google Scholar 

  2. Adjerid, S., Aiffa, M., and Flaherty, J. E. (1998). Computational methods for singularly perturbed systems. In Cronin, J., and O'Malley, R. E. (eds.), Singular Perturbation Concepts of Differential Equations, AMS Proceedings of Symposia in Applied Mathematics, AMS.

  3. Adjerid, S., Aiffa, M., and Flaherty, J. E. (1995). High-order finite element methods for singularly-perturbed elliptic and parabolic problems. SIAM J.Appl.Math. 55, 520–543.

    Google Scholar 

  4. Adjerid, S., Flaherty, J. E., and Krivodonova, L. Superconvergence and a posteriori error estimation for continuous and discontinuous Galerkin methods applied to singularly perturbed parabolic and hyperbolic problems, in preparation.

  5. Aizinger, V., Dawson, C. N., Cockburn, B., and Castillo, P. (2000). Local discontinuous Galerkin method for contaminant transport. Advances in Water Resources 24, 73–87.

    Google Scholar 

  6. Allmaras, S. R. (1989). A Coupled Euler/Navier-Stokes Algorithm for 2-D Unsteady Transonic Shock/Boundary-Layer Interaction, Ph.D. thesis, Massachussetts Institute of Technology.

  7. Allmaras, S. R., and Giles, M. B. (1987). A Second Order Flux Split Scheme for the Unsteady 2-D Euler Equations on Arbitrary Meshes, 8th. AIAA Computational Fluid Dynamic Conference, Honolulu, Hawai, June 9–11. TIAIAA, 87–1119-CP.

  8. Alotto, P., Bertoni, A., Perugia, I., and Schötzau, D. (2000). Discontinuous finite element methods for the simulation of rotating electrical machines, Proceedings of 9th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, September 11–14, Graz, Austria.

  9. Arnold, D. N. (1982). An interior penalty finite element method with discontinuous elements. SIAM J.Numer.Anal. 19, 742–760.

    Google Scholar 

  10. Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J.Numer.Anal., to appear.

  11. Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. (2000). Discontinuous Galerkin methods for elliptic problems. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 89–101.

  12. Atkins H. L., and Shu, C.-W. (1998). Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations. AIAA J. 36, 775–782.

    Google Scholar 

  13. Augoula, S., and Abgrall, R. (2000). High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. J.Sci.Comput. 15, 197–229.

    Google Scholar 

  14. Babuška, I., and Zlámal, M. (1973). Nonconforming elements in the finite element method with penalty. SIAM J.Numer.Anal. 10, 863–875.

    Google Scholar 

  15. Baker, G. A. (1977). Finite element methods for elliptic equations using nonconforming elements. Math.Comp. 31, 45–59.

    Google Scholar 

  16. Baker, G. A., Jureidini, W. N., and Karakashian, O. A. (1990). Piecewise solenoidal vector fields and the Stokes problem. SIAM J.Numer.Anal. 27, 1466–1485.

    Google Scholar 

  17. Bardos, C., LeRoux, A. Y., and Nédélec, J. C. (1979). First order quasilinear equations with boundary conditions. Comm.in P.D.E.4, 1017–1034.

    Google Scholar 

  18. Bassi, F., and S. Rebay, (1997). A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J.Comput.Phys. 131, 267–279.

    Google Scholar 

  19. Bassi, F., and S. Rebay, (1997). High-order accurate discontinuous finite element solution of the 2DEuler equations. J.Comput.Phys. 138, 251–285.

    Google Scholar 

  20. Bassi, F., and S. Rebay, (2000). GMRES for discontinuous Galerkin solution of the compressible Navier-Stokes equations. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 197–208.

  21. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., and Savini, M. (1997). A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In Decuypere, R., and Dibelius, G. (eds.), 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium), March 5–7, Technologisch Instituut, pp. 99–108.

  22. Baumann, C. E., and Oden, J. T. (1999). A discontinuous hpfinite element method for convection-diffusion problems. Comput.Methods Appl.Mech.Engrg. 175, 311–341.

    Google Scholar 

  23. Bernardi, C., Maday, Y., and Patera, A. T. (1993). Domain decomposition by the mortar element method. In Kaper, H. G., and Garbey, M. (eds.), Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, Kluwer Academic Publishers, pp. 269–286.

  24. Bernardi, C., Maday, Y., and Patera, A. T. (1994). A new nonconforming approach to domain decomposition: The mortar element method. In Brézis, H., and Lions, J. L. (eds.), Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Volume XI, Pitman Research Notes in Mathematics, No. 299, Pitman Advanced Publishing Program.

  25. Bernardi, C., Debit, N., and Maday, Y. (1990). Coupling finite element and spectral methods: First results. Math.Comp. 54, No. 189, 21–39.

    Google Scholar 

  26. Biswas, R., Devine, K. D., and Flaherty, J. (1994). Parallel, adaptive finite element methods for conservation laws. Appl.Numer.Math. 14, 255–283.

    Google Scholar 

  27. Bourgeat, A., and Cockburn, B. (1989). The TVD-projection method for solving implicit numerical schemes for scalar conservation laws: A numerical study of a simple case. SIAM J.Sci.Stat.Comput. 10, 253–273.

    Google Scholar 

  28. Bramble, J. H., and Schatz, A. H. (1977). Higher order local accuracy by averaging in the finite element method. Math.Comp. 31, 94–111.

    Google Scholar 

  29. Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A., (2000). Discontinuous Galerkin approximations for elliptic problems. Numer.Methods Partial Differential Equations 16, 365–378.

    Google Scholar 

  30. Brezzi, F., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous finite elements for diffusion problems, Atti Convegno in onore di F. Brioschi (Milano 1997), Istituto Lombardo, Accademia di Scienze e Lettere, pp. 197–217.

  31. Castillo, P. (2000). An optimal error estimate for the local discontinuous Galerkin method. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 285–290.

  32. Castillo, P., Cockburn, B., Perugia, I., and Schötzau, D., (2000). An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J.Numer.Anal. 38, 1676–1706.

    Google Scholar 

  33. Castillo, P., Cockburn, B., Schötzau, D., and Schwab, C. An optimal a priori error estimate for the hp-version of the local discontinuous Galerkin method for convectiondiffusion problems. Math.Comp., to appear.

  34. Chavent, G., and Cockburn, B. (1989). The local projection TIP 0 P 1-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél.Math.Anal.Numér. 23, 565–592.

    Google Scholar 

  35. Chavent, G., and Salzano, G. (1982). A finite element method for the 1Dwater flooding problem with gravity. J.Comput.Phys. 45, 307–344.

    Google Scholar 

  36. Chen, Z., Cockburn, B., Gardner, C., and Jerome, J. (1995). Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J.Comput.Phys. 117, 274–280.

    Google Scholar 

  37. Chen, Z., Cockburn, B., Jerome, J., and Shu, C.-W. (1995). Mixed-RKDG finite element methods for the 2-Dhydrodynamic model for semiconductor device simulation. VLSI Design 3, 145–158.

    Google Scholar 

  38. Cockburn, B. (1999). Discontinuous Galerkin methods for convection-dominated problems. In Barth, T., and Deconink, H. (eds.), High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, Vol. 9, Springer-Verlag, pp. 69–224.

  39. Cockburn, B. (2001). Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. J.Comput.Appl.Math. 128, 187–204.

    Google Scholar 

  40. Cockburn, B., and Gremaud, P. A. (1996). Error estimates for finite element methods for nonlinear conservation laws. SIAM J.Numer.Anal. 33, 522–554.

    Google Scholar 

  41. Cockburn, B., Hou, S., and Shu, C.-W. (1990). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math.Comp. 54, 545–581.

    Google Scholar 

  42. Cockburn, B., Kanschat, G., Perugia, I., and Schötzau, D. (2001). Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J.Numer.Anal. 39, 264–285.

    Google Scholar 

  43. Cockburn, B., Kanschat, G., Schötzau, D., and Schwab, C. Local discontinuous Galerkin methods for the Stokes system. SIAM J.Numer.Anal., to appear.

  44. Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (2000). The development of discontinuous Galerkin methods. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 3–50.

  45. Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.) (2000). Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag.

  46. Cockburn, B., Lin, S. Y., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J.Comput.Phys. 84, 90–113.

    Google Scholar 

  47. Cockburn, B., Luskin, M., Shu, C.-W., and Süli, E. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations, Math.Comp., to appear.

  48. Cockburn, B., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math.Comp. 52, 411–435.

    Google Scholar 

  49. Cockburn, B., and Shu, C.-W. (1991). The Runge-Kutta local projection TIP 1-discontinuous Galerkin method for scalar conservation laws. RAIRO Modél.Math.Anal.Numér. 25, 337–361.

    Google Scholar 

  50. Cockburn, B., and Shu, C.-W. (1998). The local discontinuous Galerkin method for timedependent convection-diffusion systems. SIAM J.Numer.Anal. 35, 2440–2463.

    Google Scholar 

  51. Cockburn, B., and Shu, C.-W. (1998). The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J.Comput.Phys. 141 (1998), 199–224.

    Google Scholar 

  52. Crandall, M., and Majda, A. (1980). Monotone difference approximations for scalar conservation laws. Math.Comp. 34, 1–21.

    Google Scholar 

  53. Crandall, M. G., and Lions, P. L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans.Amer.Math.Soc. 277, 1–42.

    Google Scholar 

  54. Dawson, C. N. (1995). High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping. Numer.Methods Partial Differential Equations 11, 525–538.

    Google Scholar 

  55. Dawson, C. N., and Kirby, R. (2001). High resolution schemes for conservation laws with locally varying time steps. SIAM J.Math.Anal. 22, 2256–2281.

    Google Scholar 

  56. Douglas, Jr., J., Darlow, B. L., Kendall, R. P., and Wheeler, M. F. (1979). Self-adaptive Galerkin methods for one-dimensional, two-phase immiscible flow, AIME Fifth Simposium on Reservoir Simulation (Denver, Colorado), Society of Petroleum Engineers, pp. 65–72.

  57. Douglas, Jr., J., and Dupont, T. (1976). Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Lecture Notes in Physics, Vol. 58, Springer-Verlag, Berlin.

    Google Scholar 

  58. Dubiner, M. (1991). Spectral methods on triangles and other domains. J.Sci.Comp. 6, 345–390.

    Google Scholar 

  59. Falk, R. (2000). Analysis of finite element methods for linear hyperbolic problems. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 103–112.

  60. Feng, X., and Karakashian, O. A. Two-level non-overlapping schwarz methods for a discontinuous Galerkin method. SIAM J.Numer.Anal., to appear.

  61. Flaherty, J. E., Loy, R. M., Shephard, M. S., Szymanski, B. K., Teresco, J. D., and Ziantz, L. H. (1997). Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J.Parallel and Dist.Comput. 47, 139–152.

    Google Scholar 

  62. Gopalakrishnan, J., and Kanshat, G. A multilevel discontinuous Galerkin method. Numer.Math., to appear.

  63. Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes. Math.Comp. 67, 73–85.

    Google Scholar 

  64. Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112.

    Google Scholar 

  65. Halt, D. W. (1992). A Compact Higher Order Euler Solver for Unstructured Grids, Ph.D. thesis, Washington University.

  66. Halt, D. W., and Agarwall, R. K. (1991). A compact higher order characteristic-based Euler solver for unstructured grids. AIAA, 91–3234.

  67. Halt, D. W., and Agarwall, R. K. (1992). A compact higher order Euler solver for unstructured grids with curved boundaries. AIAA, 92–2696.

  68. Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J.Comput.Phys. 49, 357–393.

    Google Scholar 

  69. Harten, A., Hyman, J. M., and Lax, P. D. (1976). On finite difference approximations and entropy conditions for shocks. Comm.Pure and Appl.Math. 29, 297–322.

    Google Scholar 

  70. Houston, P., Schwab, C., and Süli, E. (2000). Stabilized hp-finite element methods for hyperbolic problems. SIAM J.Numer.Anal. 37, 1618–1643.

    Google Scholar 

  71. Hu, C., Lepsky, O., and Shu, C.-W. (2000). The effect of the lest square procedure for discontinuous Galerkin methods for Hamilton-Jacobi equations. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 343–348.

  72. Hu, C., and Shu, C.-W. (1999). A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J.Sci.Comput. 21, 666–690.

    Google Scholar 

  73. Jaffré, J., Johnson, C., and Szepessy, A. (1995). Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math.Models Methods Appl.Sci. 5, 367–386.

    Google Scholar 

  74. Jiang, G., and Shu, C.-W. (1994). On a cell entropy inequality for discontinuous Galerkin methods. Math.Comp. 62, 531–538.

    Google Scholar 

  75. Jiang, G.-S., and Peng, D.-P. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J.Sci.Comput. 21, 2126–2143.

    Google Scholar 

  76. Jin, S., and Xin, Z.-P. (1998). Numerical passage from systems of conservation laws to Hamilton-Jacobi equation. SIAM J.Numer.Anal. 35, 2385–2404.

    Google Scholar 

  77. Johnson, C., and Pitkäranta, J. (1986). An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math.Comp. 46, 1–26.

    Google Scholar 

  78. Karniadakis, G. E., and Sherwin, S. J. (1999). Spectral/hp Element Methods in CFD, Oxford University Press.

  79. Kuznetsov, N. N. (1976). Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comp.Math.and Math.Phys. 16, 105–119.

    Google Scholar 

  80. Lafon, F., and Osher, S. (1996). High-order 2-dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations. J.Comput.Phys. 123, 235–253.

    Google Scholar 

  81. Lasser, C., and Toselli, A. (2000). An Overlapping Domain Decomposition Preconditioner for a Class of Discontinuous Galerkin Approximations of Advection-Diffusion Problems, Tech. Report 2000–12, Seminar für Angewandte Mathematik, ETH Zürich.

  82. Lepsky, O., Hu, C., and Shu, C.-W. (2000). Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations. Appl.Numer.Math. 33, 423–434.

    Google Scholar 

  83. LeSaint, P., and Raviart, P. A. (1974). On a finite element method for solving the neutron transport equation. In de Boor, C. (ed.), Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, pp. 89–145.

  84. LeVeque, R. J. (1990). Numerical Methods for Conservation Laws, Birkhäuser.

  85. Lin, Q. (2000). Full convergence for hyperbolic finite elements. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 167–177.

  86. Lin, Q., Yan, N., and Zhou, A.-H. (1996). An optimal error estimate of the discontinuous Galerkin method. J.Engrg.Math. 13, 101–105.

    Google Scholar 

  87. Lin, Q., and Zhou, A.-H. (1993). Convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. Acta Math.Sci. 13, 207–210.

    Google Scholar 

  88. Liu, J.-G., and Shu, C.-W. (2000). A high order discontinuous Galerkin method for 2D incompressible flows. J.Comput.Phys. 160, 577–596.

    Google Scholar 

  89. Liu, J.-G., and Shu, C.-W. (2000). A numerical example on the performance of highorder discontinuous Galerkin method for 2Dincompressible flows. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 369–374.

  90. Liu, J.-G., and Xin, Z.-P. (2000). Convergence of a Galerkin method for 2Ddiscontinuous Euler flows. Comm.Pure Appl.Math. 53, 786–798.

    Google Scholar 

  91. Lomtev, I., Kirby, R. M., and Karniadakis, G. E. (2000). A discontinuous Galerkin method in moving domains. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.), Discontinuous Galerkin Methods.Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 375–383.

  92. Oden, J. T., Babuška, I., and Baumann, C. E. (1998). A discontinuous hpfinite element method for diffusion problems. J.Comput.Phys. 146, 491–519.

    Google Scholar 

  93. Osher, S. (1984). Convergence of generalized MUSCL schemes. SIAM J.Numer.Anal. 22, 947–961.

    Google Scholar 

  94. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J.Comput.Phys. 79, 12–49.

    Google Scholar 

  95. Osher, S., and Shu, C.-W. (1991). High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J.Numer.Anal. 28, 907–922.

    Google Scholar 

  96. Perugia, I. and Schötzau, D. The coupling of local discontinuous Galerkin and conforming finite element methods. J.Sci.Comput., to appear.

  97. Peterson, T. (1991). A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J.Numer.Anal. 28, 133–140.

    Google Scholar 

  98. Reed, W. H., and Hill, T. R. Triangular Mesh Methods for the Neutron Transport Equation, Tech. Report LA-UR–73–479, Los Alamos Scientific Laboratory, 1973.

  99. Richter, G. R. (1988). An optimal-order error estimate for the discontinuous Galerkin method. Math.Comp. 50, 75–88.

    Google Scholar 

  100. Rivière, B., Wheeler, M. F., and Girault, V. (1999). Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput.Geom. 3, 337–360.

    Google Scholar 

  101. Rouy, E., and Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM J.Numer.Anal. 29, 867–884.

    Google Scholar 

  102. Sanders, R. (1983). On convergence of monotone finite difference schemes with variable spacing differencing. Math.Comp. 40, 91–106.

    Google Scholar 

  103. Schwab, C. (1999). hp-FEM for fluid flow simulation. In Barth, T., and Deconink, H. (eds.), High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, Vol. 9, Springer-Verlag, pp. 325–438.

  104. Shu, C.-W. (1987). TVB boundary treatment for numerical solutions of conservation laws. Math.Comp. 49, 123–134.

    Google Scholar 

  105. Shu, C.-W. (1987). TVB uniformly high order schemes for conservation laws. Math.Comp. 49, 105–121.

    Google Scholar 

  106. Shu, C.-W. (1987). TVDtime discretizations. SIAM J.Sci.Stat.Comput. 9 (1988), 1073–1084.

    Google Scholar 

  107. Shu, C.-W. (2001). Different formulations of the discontinuous Galerkin method for the viscous terms. In Shi, Z.-C., Mu, M., Xue, W., and Zou, J. (eds.), Advances in Scientific Computing, Science Press, pp. 144–155.

  108. Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J.Comput.Phys. 77, 439–471.

    Google Scholar 

  109. Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J.Comput.Phys. 83, 32–78.

    Google Scholar 

  110. Strang, G., and Fix, G. (1973). An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.

    Google Scholar 

  111. van Leer, B. (1974). Towards the ultimate conservation difference scheme, II. J.Comput.Phys. 14, 361–376.

    Google Scholar 

  112. van Leer, B. (1979). Towards the ultimate conservation difference scheme, V. J.Comput.Phys. 32, 1–136.

    Google Scholar 

  113. Warburton, T. C. (1998). Spectral/hp Methods on Polymorphic Multi-Domains: Algorithms and Applications, Ph.D. thesis, Brown University.

  114. Wheeler, M. F. (1978). An elliptic collocation-finite element method with interior penalties. SIAM J.Numer.Anal. 15, 152–161.

    Google Scholar 

  115. Wierse, M. (1997). A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv.Comput.Math. 7, 303–335.

    Google Scholar 

  116. Woodward, P., and Colella, P. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks. J.Comput.Phys. 54, 115–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockburn, B., Shu, CW. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. Journal of Scientific Computing 16, 173–261 (2001). https://doi.org/10.1023/A:1012873910884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012873910884

Navigation