Skip to main content
Log in

Ballistic Transport in Classical and Quantum Integrable Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this essay, we first sketch the development of ideas on the extraordinary dynamics of integrable classical nonlinear and quantum many body Hamiltonians. In particular, we comment on the state of mathematical techniques available for analyzing their thermodynamic and dynamic properties.Then, we discuss the unconventional finite temperature transport of integrable systems using as example the classical Toda chain and the toy model of a quantum particle interacting with a fermionic bath in one dimension; we focus on the singular long time asymptotic of current-current correlations, we introduce the notion of the Drude weight and we emphasize the role played by conservation laws in establishing the ballistic character of transport in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Google Scholar 

  2. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Google Scholar 

  3. “Optical solitons: theoretical challenges and industrial perspectives”, editors: V.E. Zakharov and S. Wabnitz, Les Houches Workshop, Springer (1998).

  4. “Quantum Inverse Scattering Method and Correlation Functions”, V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Cambridge Univ. Press (1993).

  5. H. Castella, X. Zotos, P. Prelovšek, Phys. Rev. Lett. 74, 972 (1995).

    Google Scholar 

  6. M. Toda, “Theory of Nonlinear Lattices”, Springer Series in Solid-State Sciences 20, Springer-Verlag, (1981).

  7. H. Flaschka, Phys. Rev. B9, 1924 (1974).

    Google Scholar 

  8. M. Henon, Phys. Rev. B9, 1921 (1974).

    Google Scholar 

  9. V. Muto, A.C. Scott and P.L. Christiansen, Physica D44, 75 (1990).

    Google Scholar 

  10. See for instance: T. Schneider and E. Stoll, Phys. Rev. Lett. 45, 997 (1980); A. Cuccoli et al., Phys. Rev. B47, 7859 (1993); N. Theodorakopoulos and M. Peyrard, Phys. Rev. Lett. 83, 2293 (1999).

    Google Scholar 

  11. C. Giardina et al., Phys. Rev. Lett. 84, 2144 (1998).

    Google Scholar 

  12. See however the system analyzed in, M. Garst and A. Rosch, Eur. Lett. 55, 66 (2001).

    Google Scholar 

  13. P. Mazur, Physica 43, 533 (1969); M. Suzuki, Physica 51, 277 (1971).

    Google Scholar 

  14. J.A. McLennan, “Introduction to non equilibrium statistical mechanics”, Prentice-Hall Advanced Reference Series, (1989).

  15. Basically equivalent to the entropic component, N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Holt, Rinehart and Winston, p. 253 (1976).

  16. X. Zotos, F. Naef and P. Prelovšek, Phys. Rev. B55, 11029 (1997).

    Google Scholar 

  17. F.G. Mertens and H. Büttner, Phys. Lett. 84A, 335 (1981).

    Google Scholar 

  18. W. Kohn, Phys. Rev. A171, 133 (1964).

    Google Scholar 

  19. J. B. McGuire, J. Math. Ph. 6, 432 (1965); C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

    Google Scholar 

  20. S. Fujimoto and N. Kawakami, J. Phys. A. 31, 465 (1998).

    Google Scholar 

  21. S. Fujimoto, J. Phys. Soc. Jpn. 68, 2810 (1999).

    Google Scholar 

  22. X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).

    Google Scholar 

  23. K. Damle and S. Sachdev, Phys. Rev. B57, 8307 (1998).

    Google Scholar 

  24. T. Giamarchi and A. J. Millis, Phys. Rev. B46, 9325 (1992).

    Google Scholar 

  25. A. Rosch and N. Andrei, Phys. Rev. Lett. 85, 1092 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotos, X. Ballistic Transport in Classical and Quantum Integrable Systems. Journal of Low Temperature Physics 126, 1185–1194 (2002). https://doi.org/10.1023/A:1013827615835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013827615835

Keywords

Navigation